【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
【答案】(1);(2).
【解析】試題分析:
求出對(duì)應(yīng)的集合:,
(1)為真,則均為真,求交集可得的范圍;
(2)是 的充分不必要條件,即是的充分不必要條件,因此有集合是集合的真子集.
試題解析:
(1)由得當(dāng)時(shí),1<,即為真時(shí)實(shí)數(shù)的取值范圍是1<.由|x-3|≤1, 得-1≤x-3≤1, 得2≤x≤4即為真時(shí)實(shí)數(shù)的取值范圍是2≤x≤4,若為真,則真且真,所以實(shí)數(shù)的取值范圍是.
(2) 由得, 是的充分不必要條件,即 ,且 , 設(shè)A=,B=,則,
又A==, B=={x|x>4 or x<2},
則3a>4且a<2其中所以實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在高為2的梯形中, , , ,過(guò)、分別作, ,垂足分別為、。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。
(1)若,證明: ;
(2)若,證明: ;
(3)在(1),(2)的條件下,求三棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年12月16日,科幻片《俠盜一號(hào)》上映,上映至今,全球累計(jì)票房高達(dá)8億美金.為了了解婁底觀眾的滿意度,某影院隨機(jī)調(diào)查了本市觀看影片的觀眾,并用“10分制”對(duì)滿意度進(jìn)行評(píng)分,分?jǐn)?shù)越高滿意度越高,若分?jǐn)?shù)不低于9分,則稱該觀眾為“滿意觀眾”.現(xiàn)從調(diào)查人群中隨機(jī)抽取12名.如圖所示的莖葉圖記錄了他們的滿意度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉).
(1)求從這12人中隨機(jī)選取1人,該人不是“滿意觀眾”的概率;
(2)從本次所記錄的滿意度評(píng)分大于9.1的“滿意觀眾”中隨機(jī)抽取2人,求這2人得分不同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水是萬(wàn)物之本、生命之源,節(jié)約用水,從我做起.我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.(1)求直方圖中a的值;(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;(3)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用數(shù)字0、2、3、4、6按下列要求組數(shù)、計(jì)算:
(1)能組成多少個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)?
(2)可以組成多少個(gè)可以被3整除的沒(méi)有重復(fù)數(shù)字的三位數(shù)?
(3)求即144的所有正約數(shù)的和.
(注:每小題結(jié)果都寫成數(shù)據(jù)形式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.
(1)求的方程;
(2)延長(zhǎng)交拋物線于點(diǎn),過(guò)點(diǎn)作拋物線的切線,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五面體中,,底面是正三角形,,四邊形是矩形,二面角為直二面角.
(1)在上運(yùn)動(dòng),當(dāng)在何處時(shí),有平面,并說(shuō)明理由;
(2)當(dāng)平面時(shí),求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了完成對(duì)某城市的工薪階層是否贊成調(diào)整個(gè)人所得稅稅率的調(diào)查,隨機(jī)抽取了60人,作出了他們的月收入頻率分布直方圖(如圖),同時(shí)得到了他們?cè)率杖肭闆r與贊成人數(shù)統(tǒng)計(jì)表(如下表):
(1)試根據(jù)頻率分布直方圖估計(jì)這60人的平均月收入;
(2)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人都不贊成的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為短軸頂點(diǎn)在圓上.
(Ⅰ)求橢圓方程;
(Ⅱ)已知點(diǎn),若斜率為1的直線與橢圓相交于兩點(diǎn),試探究以為底邊的等腰三角形是否存在?若存在,求出直線的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com