【題目】如圖,五面體,底面是正三角形,四邊形是矩形,二面角為直二面角

1上運動在何處時,平面,并說明理由;

2平面,求二面角余弦值

【答案】1中點;2.

【解析】

試題分析:1可先猜想,再證明.假設中點時,平面.連結(jié),連結(jié),可證得中點,中點,從而,根據(jù)線面平行的判定定理即可證得平面2為坐標原點,建立空間直角坐標系,求出平面與平面的法向量,根據(jù)向量的夾角公式即可求得二面角余弦值

試題解析:1中點時,平面

證明:連結(jié)連結(jié),

四邊形是矩形,

中點,中點,從而,

平面,平面

平面

2建立空間直角坐標系,如圖所示,

,,,

所以,

為平面的法向量,則有

可得平面的一個法向量為,

而平面的一個法向量為

所以,

故二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設p:實數(shù)x滿足,其中,命題實數(shù)滿足

|x-3|≤1 .

(1)若為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)求不等式的解集;

2)若對一切,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設p:實數(shù)x滿足,其中,命題實數(shù)滿足

|x-3|≤1 .

(1)若為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點處下上至處有兩種路徑一種是從沿直線步行到另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā),乙從乘纜車到處停留,再從勻速步行到假設纜車勻速直線運動的速度為,山路長為1260,經(jīng)測量

1求索道的長;

2問:乙出發(fā)多少,乙在纜車上與甲的距離最短?

3為使兩位游客在處互相等待的時間不超過乙步行的速度應控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—1:幾何證明選講

如圖,已知圓的外接圓, ,邊上的高,是圓的直徑,過點作圓的切線交的延長線于點.

求證:;

,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認為“體育迷”與性別有關?

非體育迷

體育迷

合計

合計

(參考公式,其中.)

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.

下列命題:

①“囧函數(shù)”的值域為

②“囧函數(shù)”在上單調(diào)遞增;

③“囧函數(shù)”的圖象關于軸對稱;

④“囧函數(shù)”有兩個零點;

⑤“囧函數(shù)”的圖象與直線

至少有一個交點.正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面 側(cè)面1, ,

(Ⅰ)求證: ;

(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

同步練習冊答案