1.已知實數(shù)a>0,b>0,若2a+b=1,則$\frac{1}{a}+\frac{2}$的最小值是( 。
A.$\frac{8}{3}$B.$\frac{11}{3}$C.4D.8

分析 利用“乘1法”與基本不等式的性質(zhì).

解答 解:∵實數(shù)a>0,b>0,2a+b=1,
則$\frac{1}{a}+\frac{2}$=(2a+b)$(\frac{1}{a}+\frac{2})$=4+$\frac{a}+\frac{4a}$≥4+2$\sqrt{\frac{a}•\frac{4a}}$=8,當且僅當b=2a=$\frac{1}{2}$時取等號.
故選:D.

點評 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知圓C:x2+y2+6y-a=0的圓心到直線x-y-1=0的距離等于圓C半徑的$\frac{1}{2}$,則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.P為△ABC邊BC上的點,滿足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為( 。
A.$\frac{2\sqrt{2}}{3}$+1B.2$\sqrt{3}$C.2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是共面的三個向量,其中$\overrightarrow{a}$=($\sqrt{2}$,2),|$\overrightarrow$|=2$\sqrt{3}$,|$\overrightarrow{c}$|=2$\sqrt{6}$,$\overrightarrow{a}$∥$\overrightarrow{c}$.
(Ⅰ)求|$\overrightarrow{c}$-$\overrightarrow{a}$|;
(Ⅱ)若$\overrightarrow{a}$-$\overrightarrow$與3$\overrightarrow{a}$+2$\overrightarrow$垂直,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知雙曲線的焦點在y軸,實軸長與虛軸長之比為2:3,且經(jīng)過P($\sqrt{6}$,2),求雙曲線方程.
(2)已知焦點在x軸上,離心率為$\frac{5}{3}$,且經(jīng)過點M(-3,2$\sqrt{3}$)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|log${\;}_{\frac{1}{2}}$x>-1},B=|x|2x>$\sqrt{2}$|,則A∪B=( 。
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,+∞)C.(0,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.表面積為20π的球面上有四點S、A、B、C,且△ABC是邊長為2$\sqrt{3}$的等邊三角形,若平面SAB⊥平面ABC,則三棱錐S-ABC體積的最大值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖1,ABCD為長方形,AB=3,AD=$\sqrt{2}$,E,F(xiàn)分別是邊AB,CD上的點,且AE=CF=1,DE與AF相交于點G,將三角形ADF沿AF折起至ADF',使得D'E=1,如圖2.
(1)求證:平面D'EG⊥ABCF平面;
(2)求三棱錐D'-BEG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,點E、F分別是棱PC和PD的中點.
(1)求證:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,證明:AF⊥平面PCD.

查看答案和解析>>

同步練習冊答案