如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),面CDE是等邊三角形,棱

(1)證明FO//平面CDE;

(2)設(shè),證明EO⊥平面CDF。

證明:(1)取CD中點(diǎn)M,連結(jié)OM,在矩形ABCD中

,又,則。連結(jié)EM,于是四邊形EFOM為平行四邊形

∴ FO//EM                      

又 ∵ FO平面CDE,且EM平面CDE,∴ FO//平面CDE   

(2)連結(jié)FM,由(1)和已知條件,在等邊中,CM=DM,EM⊥CD且。

因此平行四邊形EFOM為菱形,從而EO⊥FM 

∵ CD⊥OM,CD⊥EM    ∴ CD⊥平面EOM,從而CD⊥EO

而FMCD=M,所以平面CDF  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求證:BF∥平面ACGD;
(Ⅱ)求五面體ABCDEFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在五面體ABCDE中,平面BCD⊥平面ABC,DC=DB=
3
,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求證:平面ABE⊥平面ABC
(2)在線段BC上有一點(diǎn)F,且BF=
1
2
,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在五面體ABC-DEF中,四邊形BCFE 是矩形,DE⊥平面BCFE.
求證:(1)BC⊥平面ABED;
(2)CF∥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年遼寧省鞍山一中高考數(shù)學(xué)五模試卷(理科)(解析版) 題型:解答題

如圖,在五面體ABCDE中,平面BCD⊥平面ABC,DC=DB=,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求證:平面ABE⊥平面ABC
(2)在線段BC上有一點(diǎn)F,且,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年高考數(shù)學(xué)預(yù)測(cè)試卷2(文科)(解析版) 題型:解答題

如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求證:BF∥平面ACGD;
(Ⅱ)求五面體ABCDEFG的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案