【題目】已知函數(shù).

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)若,求函數(shù)的單調(diào)區(qū)間.

【答案】(1);(2)單調(diào)遞減,在單調(diào)遞增.

【解析】試題分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義曲線在點(diǎn)處的切線斜率 的值,根據(jù)點(diǎn)斜式可得切線方程;(2)先求出函數(shù)的導(dǎo)數(shù),根據(jù)解關(guān)于 導(dǎo)函數(shù)的不等式可得增區(qū)間, 解關(guān)于的不等式,可求出函數(shù)的單調(diào)減區(qū)間.

試題解析:(1)當(dāng)時,函數(shù),

,

∴曲線在點(diǎn)處的切線方程為.

(2).

,解得

,解得

單調(diào)遞減,在單調(diào)遞增.

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線以及及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線處的切線與軸平行時,在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點(diǎn)與拋物線的焦點(diǎn)重合,且點(diǎn)到直線的距離為, 的公共弦長為.

(1)求橢圓的方程及點(diǎn)的坐標(biāo);

(2)過點(diǎn)的直線交于兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)時,函數(shù)的兩個極值點(diǎn)為 ,且.證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關(guān)關(guān)系,并求得回歸直線方程和相關(guān)系數(shù),分別得到以下四個結(jié)論:

其中,一定不正確的結(jié)論序號是( )

A. ②③ B. ①④ C. ①②③ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市英才中學(xué)的一個社會實(shí)踐調(diào)查小組,在對中學(xué)生的良好“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問卷,對收回的120份有效問卷進(jìn)行統(tǒng)計,得到如下列聯(lián)表:

做不到光盤

能做到光盤

合計

45

10

55

30

15

45

合計

75

25

100

(1)現(xiàn)已按是否能做到光盤分層從45份女生問卷中抽取9份問卷,若從這9份問卷中隨機(jī)抽取4份,并記其中能做到光盤的問卷的份數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)如果認(rèn)為良好“光盤習(xí)慣”與性別有關(guān)犯錯誤的概率不超過,那么根據(jù)臨界值表最精確的的值應(yīng)為多少?請說明理由.

附:獨(dú)立性檢驗(yàn)統(tǒng)計量,其中.

獨(dú)立性檢驗(yàn)臨界表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了估計某自然保護(hù)區(qū)中天鵝的數(shù)量,可以使用以下方法:先從該保護(hù)區(qū)中捕出一定數(shù)量的天鵝,例如200只,給每只天鵝做上不影響其存活的記號,然后放回保護(hù)區(qū),經(jīng)過適當(dāng)?shù)臅r間,讓其和保護(hù)區(qū)中其余的天鵝充分混合,再從保護(hù)區(qū)中捕出一定數(shù)量的天鵝,例如150只,查看其中有記號的天鵝,設(shè)有20只,試根據(jù)上述數(shù)據(jù),估計該自然保護(hù)區(qū)中天鵝的數(shù)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點(diǎn), .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過,交直線于點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

2)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案