精英家教網(wǎng)在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無蓋的方底箱子,箱底的邊長是多少時(shí),箱子的容積最大?最大容積是多少?
分析:先設(shè)箱底邊長為xcm,則箱高h=
60-x
2
cm,得箱子容積,再利用導(dǎo)數(shù)的方法解決,應(yīng)注意函數(shù)的定義域.
解答:精英家教網(wǎng)解:設(shè)箱底邊長為xcm,則箱高h=
60-x
2
cm,得箱子容積V(x)=x2h=
60x2-x3
2
(0<x<60).
V′(x)=60x-
3x2
2
(0<x<60)
令    V′(x)=60x-
3x2
2
=0,
解得  x=0(舍去),x=40,
并求得V(40)=16 000
由題意可知,當(dāng)x過小(接近0)或過大(接近60)時(shí),箱子容積很小,因此,16 000是最大值
答:當(dāng)x=40cm時(shí),箱子容積最大,最大容積是16 000cm3
點(diǎn)評:(1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問題,需要分析問題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實(shí)際意義.(2)根據(jù)問題的實(shí)際意義來判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較.(3)相當(dāng)多有關(guān)最值的實(shí)際問題用導(dǎo)數(shù)方法解決較簡單
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)請你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省威海四中高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

請你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省高考數(shù)學(xué)試卷(解析版) 題型:解答題

請你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第七學(xué)段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)請你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱(底面是正方形的直棱柱)形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形HEF斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.

(1)請用分別表示|GE|、|EH|的長

(2)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?

H

 
(3)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省信陽市畢業(yè)班第一次調(diào)研考試文科數(shù)學(xué)試卷 題型:解答題

   (本小題滿分12分)請你設(shè)計(jì)一個(gè)包裝盒,如下圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱挪狀的包裝盒E、F在AB上,是被切去的一等腰直角三角形斜邊的兩個(gè)端點(diǎn).設(shè)AE= FB=x(cm).

 

 

(I)某廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?

(II)某廠商要求包裝盒的容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.[

 

查看答案和解析>>

同步練習(xí)冊答案