若2a>1,則a的取值范圍為
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:2a>1=20,且y=2x在R上是增函數(shù),從而求解.
解答: 解:∵2a>1=20
又∵y=2x在R上是增函數(shù),
∴a>0.
故答案為:a>0.
點(diǎn)評:本題考查了指數(shù)函數(shù)的單調(diào)性的判斷與應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是奇函數(shù),它在(0,+∞)上是增函數(shù),且f(x)<0,問F(x)=
1
f(x)
在(-∞,0)上是增函數(shù)還是減函數(shù)?證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊在直線y=-2x上,且sinα>0,則cosα和tana的值分別為(  )
A、
5
2
,-2
B、-
5
5
,-
1
2
C、-
2
5
2
,-2
D、-
5
5
,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的中心為O,左焦點(diǎn)為F1,P是橢圓上的一點(diǎn),已知△PF1O為正三角形,則P到右準(zhǔn)線的距離與長半軸的長之比是(  )
A、
3
-1
B、3-
3
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司為了公司周年慶典,先將公司門前廣場進(jìn)行裝飾,廣場上有一垂直于地面的墻面AB高8+8
3
,一個垂直于地面的可移動柱子CD高為8m,現(xiàn)用燈帶對它們進(jìn)行如下裝飾(如圖):設(shè)柱子CD與墻面AB相距8m,在AB上取一點(diǎn)E,以C為支點(diǎn)將燈帶拉直并固定在地面的F處,再講燈帶拉直依次固定在D處、B處、E處,形成一個三角形型的燈帶(圖中虛線所示)設(shè)∠EFB=θ,燈帶總長為y(單位:m)
(1)求y關(guān)于θ的函數(shù)表達(dá)式及θ的取值范圍;
(2)當(dāng)BE多長時,所用燈帶總長最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,A1,A2,B1,B2橢圓頂點(diǎn),F(xiàn)2為右焦點(diǎn),延長B1F2與A2B2交于點(diǎn)P,若∠B1PA2為鈍角,則該橢圓離心率的取值范圍是( 。
A、(
5
-2
2
,0)
B、(0,
5
-2
2
C、(0,
5
-1
2
D、(
5
-1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A(2,0),B(1,3),C(2,2)在圓C上,直線l:3x+y-6=0,
(1)求圓C的方程;
(2)判斷直線l與圓C的位置關(guān)系;若相交,求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在x≥0時的圖象如圖所示,則不等式f(x)<0的解集為( 。
A、(-1,0)∪(1,2)
B、(-∞,2)∪(-1,0)∪(1,2)
C、(-2,-1)∪(1,2)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序:輸入2,3,則程序執(zhí)行的結(jié)果為( 。
A、2,3B、3,2
C、2,2D、3,3

查看答案和解析>>

同步練習(xí)冊答案