解:(1)f(x)=
②若a<0<b ,f(x)在[a,0]上單調遞增,在[0,b]上單調遞減,因此f(x)在x=0處取最大值2b,
在x=a或x=b處取最小值2a.故
由于a<0,又,
故f(x)在x=a處取最小值2a,即,解得
于是得

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)),
(1)求函數(shù)的最小值;
(2)已知,命題p:關于x的不等式對任意恒成立;命題q:不等式 對任意恒成立.若“pq”為真,“pq”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)滿足,且上單調遞增.
(1)求的解析式;
(2)若在區(qū)間上的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)二次函數(shù)f(x)滿足且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間上,y= f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分) 二次函數(shù)f(x)滿足且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在區(qū)間上求y= f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=loga[(-2)x+1]在區(qū)間[1,2]上恒為正,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

函數(shù)在定義域R內可導,若,若
的大小關系是(    )

A. B.    C. D.

查看答案和解析>>

同步練習冊答案