已知橢圓的離心率e=,左、右焦點(diǎn)分別為F1,F(xiàn)2,定點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上.

(1)求橢圓C的方程;

(2)設(shè)直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),直線F2M,F(xiàn)2N的傾斜角分別為α,β,且α+β=π,求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044

如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=

左右兩個焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的一個頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l的對稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足,()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點(diǎn)且與軸垂直的

直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足,

)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點(diǎn)且與軸垂直的

直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足

)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:云南省2010-2011學(xué)年高三數(shù)學(xué)一輪復(fù)習(xí)測試:分類與整合思想 題型:選擇題

 已知橢圓的離心率 e=-, 則m的值為

A.3            B.或3            C.          D.

 

查看答案和解析>>

同步練習(xí)冊答案