命題“若∠C=90°,則△ABC是直角三角形”的否命題的真假性為
 
考點(diǎn):四種命題
專題:簡(jiǎn)易邏輯
分析:首先對(duì)原命題的逆命題的真假進(jìn)行判斷,由于逆命題與否命題是等價(jià)命題,所以通過(guò)判斷逆命題的真假來(lái)判斷結(jié)論.
解答: 解:命題“若∠C=90°,則△ABC是直角三角形”,
逆命題為:若△ABC是直角三角形,則∠C=90°.為假命題.
由于否命題于逆命題是等價(jià)命題.
所以:命題的否命題為假命題.
故答案為:假
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):四種命題的相互轉(zhuǎn)換與命題真假的判斷.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+1)2+(y-2)2=6,直線l:mx-y+1-m=0,直線l被圓C截得的弦長(zhǎng)最小時(shí)l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,給出以下四個(gè)結(jié)論:
①若m?α,n∥α,則m∥n;            
②若m⊥n,m⊥β,則n∥β;
③若α∩β=n,m∥n,則m∥α且m∥β;  
④若m⊥α,m⊥β,則α∥β.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比為正數(shù),且a3•a9=2a52,a2=1,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x(y+
1
x
)=2013,x和y都是正整數(shù),那么x+y的最大值是
 
,x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,對(duì)角線AC⊥BD,且相交于點(diǎn)O,E是AB邊的中點(diǎn),EO的延長(zhǎng)線交CD于F.
(1)求證:EF⊥CD;
(2)若∠ABD=30°,求證S△ODF:S△ODC=1:4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(x+1)-loga(1-x),(a>0且a≠1)
(Ⅰ)求實(shí)f(x)的定義域;
(Ⅱ)判斷f(x)的奇偶性并予以證明;
(Ⅲ)當(dāng)a>0時(shí),求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
,
b
均為單位向量,且
a
b
=0,(
a
-
c
)•(
b
-
c
)≤0,則|2
a
-
c
|的最大值為(  )
A、
10
+
2
2
B、
10
-
2
2
C、
2
D、
2
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=f(x),若存在區(qū)間[a,b],當(dāng)x∈[a,b]時(shí)的值域?yàn)閇ka,kb](k>0),則稱y=f(x)為k倍值函數(shù),若f(x)=lnx+2x是k倍值函數(shù),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案