7.將十位制389化成四進位制數(shù)是12011(4)

分析 根據(jù)算法的規(guī)則,將389變?yōu)樗倪M位制數(shù),即可知末位數(shù)是幾,對比四個選項,選出正確選項即可.

解答 解:將389化成四進位制數(shù)的運算過程如圖,
所得的四進位制數(shù)是12011(4),
故答案為:12011(4)

點評 本題考查排序問題與算法的多樣性,解題的關鍵是掌握進位制換算的方法--除K取余法,注意:余數(shù)自下而上排列,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設等比數(shù)列{an}的前n項和為Sn,若S6=2S3,則$\frac{{{S}_{12}}}{{{S}_{3}}}$=(  )
A.3B.4C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知f(x)=$\left\{{\begin{array}{l}{\frac{1}{{f({x+1})}}-1,-1<x<0}\\{x,0≤x<1}\end{array}}$,若方程f(x)-4ax=a(a≠0)有唯一解,則實數(shù)a的取值范圍是( 。
A.$[{\frac{1}{3},+∞})$B.$[{\frac{1}{5},+∞})$C.$\left\{1\right\}∪[{\frac{1}{3},+∞})$D.$\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.函數(shù)f(x)=x2-mlnx-nx.
(1)當m=-1時,函數(shù)f(x)在定義域內是增函數(shù),求實數(shù)n的取值范圍;
(2)當m>0,n=0時,關于x的方程f(x)=mx有唯一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若點G為△ABC的重心,且AG⊥BG,AB=2,則$\overrightarrow{CA}$•$\overrightarrow{CB}$的值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.奇函數(shù)f(x)的定義域為(-1,1),且在(-1,1)上是增函數(shù),若f(1-a)+f(1-2a)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知曲線S:y=x3+4 及點A(1,5),則過點A 的曲線S 的切線方程為3x-y-2=0或3x-4y+17=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在空間四邊形ABCD中,若P,R,Q分別是AB,AD,CD的中點,過P,R,Q的平面與BC交于點S,求證:S是BC的中點.

查看答案和解析>>

同步練習冊答案