16.已知曲線S:y=x3+4 及點A(1,5),則過點A 的曲線S 的切線方程為3x-y-2=0或3x-4y+17=0.

分析 根據(jù)所給的曲線的方程和曲線上一點,求過這一個點的切線的方程,首先對函數(shù)求導(dǎo),求出函數(shù)在這一點的導(dǎo)數(shù),即過這個點的切線的斜率,根據(jù)點斜式寫出方程.

解答 解:∵y=x3+4,∴y′=3x2,
若點A(1,5)為切點,則k=3
∴切線的方程是y-5=3(x-1),
即3x-y-2=0.
若A不為切點,則設(shè)切點為(x1,y1),
則y1=x13+4,3x12=$\frac{{y}_{1}-5}{{x}_{1}-1}$,
解得,x1=-$\frac{1}{2}$,
∴切線方程為y-5=$\frac{3}{4}$(x-1)即3x-4y+17=0,
綜上,過點A的切線方程為3x-y-2=0或3x-4y+17=0.
故答案為:3x-y-2=0或3x-4y+17=0.

點評 本題考查利用導(dǎo)數(shù)研究曲線上過一個點的方程,本題解題的關(guān)鍵是看清楚這個點是不是曲線上的點,適合不是的處理方法不同.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.觀察下列等式
$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i=cos$\frac{π}{3}$+isin$\frac{π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3=cosπ+isinπ,
($\frac{1}{2}$+$\frac{\sqrt{4}}{2}$i)4=cos$\frac{4π}{3}$+isin $\frac{4π}{3}$,

照此規(guī)律,可以推測對于任意的n∈N*,($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)n=cos$\frac{n}{3}$π+isin$\frac{n}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將十位制389化成四進(jìn)位制數(shù)是12011(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列四個結(jié)論:
①若命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0;
②“(x-3)(x-4)=0”是“x-3=0”的充分而不必要條件;
③命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;
④函數(shù)f(x)=cos(2x-$\frac{π}{6}$)的圖象關(guān)于直線x=$\frac{π}{3}$對稱.
其中正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若f($\sqrt{x}$-1)=x+a.
(1)求函數(shù)f(x)的解析式及定義域;
(2)若f(x)>0對任意的x≥0恒成立,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC的三個頂點A(4,0),B(8,10),C(0,6).
(1)求AC邊上的高所在的直線方程;
(2)求過B點且與點A,C距離相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤m+1}若B⊆A,則m的取值范圍$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|.
(1)若f(x)>m(m>0)的解集為x∈(-∞,1)∪(7,+∞),求實數(shù)a,m的值;
(2)當(dāng)a=-1時,當(dāng)x≤-2時,不等式f(x)+t≥f(x+2)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.項數(shù)為n的數(shù)列a1,a2,a3,…,an的前k項和為Sk(k=1,2,3,…,n),定義$\frac{{S}_{1}{+S}_{2}+…{+S}_{n}}{n}$為該項數(shù)列的“凱森和”,如果項數(shù)為99項的數(shù)列a1,a2,a3,…,a99的“凱森和”為1 000,那么項數(shù)為100的數(shù)列10,a1,a2,a3,…,a99的“凱森和”為(  )
A.991B.1 000C.1 090D.1 100

查看答案和解析>>

同步練習(xí)冊答案