12.已知冪函數(shù)f(x)=xn,n∈{-2,-1,1,3}的圖象關(guān)于y軸對稱,則下列選項正確的是( 。
A.f(-2)>f(1)B.f(-2)<f(1)C.f(2)=f(1)D.f(-2)>f(-1)

分析 求出冪函數(shù)的解析式,根據(jù)函數(shù)的單調(diào)性判斷函數(shù)值的大小即可.

解答 解:冪函數(shù)f(x)=xn,n∈{-2,-1,1,3}的圖象關(guān)于y軸對稱,
則n=-2,則f(x)=$\frac{1}{{x}^{2}}$,f(-2)=f(x),
而f(x)在0,+∞)遞減,
∴f(-2)=f(2)<f(1),
故選:B.

點評 本題考查了求冪函數(shù)的解析式問題,考查函數(shù)的奇偶性和函數(shù)的單調(diào)性,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=1-$\frac{a}{x}$+ln$\frac{1}{x}$(a為實數(shù)).
(1)當(dāng)a=1時,求函數(shù)f(x)的圖象在點($\frac{1}{2}$,f($\frac{1}{2}$))處的切線方程;
(2)已知n∈N*,求證:ln(n+1)<1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+…+$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$(x∈R)為奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)的單調(diào)性;
(3)若對任意的t∈[-1,$\frac{1}{2}$],不等式f(t2+2)+f(t2-tk)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:($\overrightarrow{a}$-$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=-4,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)x,y>0,x+y=9,則$\sqrt{x+1}+\sqrt{y+5}$的最大值為$\sqrt{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某廠在計劃期內(nèi)要安排生產(chǎn)甲、乙兩種產(chǎn)品,這些產(chǎn)品分別需要在A、B、C、D四種不同的設(shè)備上加工,按工藝規(guī)定,產(chǎn)品甲和產(chǎn)品乙在各設(shè)備上需要的加工臺時數(shù)于下表給出.已知各設(shè)備在計劃期內(nèi)有效臺時數(shù)分別是12,8,16,12(一臺設(shè)備工作一小時稱為一臺時),該廠每生產(chǎn)一件產(chǎn)品甲可得利潤2元,每生產(chǎn)一件產(chǎn)品乙可得利潤3元,問應(yīng)如何安排生產(chǎn)計劃,才能獲得最大利潤??
  設(shè)備
產(chǎn)品
ABCD
2140
2204

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\sqrt{x}$+ln(1-x)的定義域為( 。
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)p,q是兩個命題,$p:\frac{1}{x}≤-1$,q:|2x+1|<1,則p是q( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”.

查看答案和解析>>

同步練習(xí)冊答案