10.若定義在R上的函數(shù)f(x),滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時,f(x)=x2,函數(shù)g(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x-1),x>1}\\{{2}^{x},x≤1}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-4,5]內(nèi)的零點(diǎn)的個數(shù)為( 。
A.7B.8C.9D.10

分析 由題意可得f(x)的周期為2,x∈[-1,1]時,f(x)=x2,且本題即求函數(shù)f(x)的圖象和函數(shù)g(x)的圖象在區(qū)間[-4,5]內(nèi)交點(diǎn)的個數(shù),數(shù)形結(jié)合可得結(jié)論.

解答 解:∵f(x+2)=f(x),∴f(x)的周期為2.
當(dāng)x∈[-1,1]時,f(x)=x2,
函數(shù)g(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x-1),x>1}\\{{2}^{x},x≤1}\end{array}\right.$,
則函數(shù)h(x)=f(x)-g(x)
在區(qū)間[-4,5]內(nèi)零點(diǎn)的個數(shù),
即函數(shù)f(x)的圖象(黑色部分)和函數(shù)g(x)
的圖象(紅色部分)在區(qū)間[-4,5]內(nèi)交點(diǎn)的個數(shù),
如圖所示:
故函數(shù)f(x)的圖象和函數(shù)g(x)的圖象
在區(qū)間[-4,5]內(nèi)交點(diǎn)的個數(shù)為8,
故選:B.

點(diǎn)評 本題主要考查方程根的存在性以及個數(shù)判斷,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求函數(shù)y=$\sqrt{{x}^{2}-2x+3}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=log2(4x)•log2(2x)的定義域為$[\frac{1}{4},4]$.
(Ⅰ)若t=log2x,求t的取值范圍;
(Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在坐標(biāo)平面xOy內(nèi),點(diǎn)A(x,y)(不是原點(diǎn))的“k-相好點(diǎn)”B是指:滿足|OA|•|OB|=k(O為坐標(biāo)原點(diǎn))且在射線OA上的點(diǎn),若點(diǎn)P1,P2,…P2017是直線y=-2x+10上的2017個不同的點(diǎn),他們的“10-相好點(diǎn)”分別是${P_1}^/,{P_2}^/,…{P_{2017}}^/$
(1)若P1(2,6),求${P_1}^/$的坐標(biāo);
(2)證明:點(diǎn)${P_1}^/,{P_2}^/,…{P_{2017}}^/$共圓,并求出圓的方程C;
(3)第(2)問中的圓C與x軸交于M,T兩點(diǎn)(點(diǎn)M在點(diǎn)T的右側(cè)),過點(diǎn)M作直線MP,MR且kMP+kMR=0,兩直線與圓C的另外一個交點(diǎn)分別為P,R.直線PR的斜率是否為定值?若是,求出這個定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=-2ax+b與函數(shù)y=ax2-2bx+c在同一坐標(biāo)系內(nèi)的圖象只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)y=f(x)的圖象與y=log2(x+a)的圖象關(guān)于直線y=x對稱,且f(2)+f(4)=6,則a=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log3(3+x)+log3(3-x).
(1)求函數(shù)f(x)的定義域和值域;
(2)判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\frac{4{x}^{2}+2x+5}{{x}^{2}+x+1}$(x>1)的最小值是$\frac{16-2\sqrt{7}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=ex+lnx在x=1處的切線的斜率等于e+1.

查看答案和解析>>

同步練習(xí)冊答案