已知直線x-y+1=0與圓x2+y2-4x-2y+m=0交于A、B兩點(diǎn)
(1)求線段AB的垂直平分線的方程.
(2)若|AB|=2
2
,求m的值.
考點(diǎn):圓的一般方程
專題:計(jì)算題,直線與圓
分析:(1)由題意,線段AB的垂直平分線經(jīng)過圓的圓心(2,1),斜率為-1,可得線段AB的垂直平分線的方程.
(2)利用|AB|=2
2
,求出圓心到直線的距離,利用點(diǎn)到直線的距離公式求出圓心到直線的距離,從而可求m的值.
解答: 解:(1)由題意,線段AB的垂直平分線經(jīng)過圓的圓心(2,1),斜率為-1,
∴方程為y-1=-(x-2),即x+y-3=0;
(2)圓x2+y2-4x-2y+m=0可化為(x-2)2+(y-1)2=-m+5,
∵|AB|=2
2
,
∴圓心到直線的距離為
-m+5-2
=
3-m
,
∵圓心到直線的距離為d=
|2-1+1|
2
=
2
,
3-m
=
2
,
∴m=1
點(diǎn)評:本題考查點(diǎn)到直線的距離公式的應(yīng)用,以及弦長公式的應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三角形三邊所在直線方程分別為2x+y-12=0、3x-2y+10=0、x-4y+10=0.
(1)求表示三角形區(qū)域(含邊界)的不等式組,并畫出此區(qū)域(用陰影線條表示);
(2)若點(diǎn)P(x,y)在上述區(qū)域運(yùn)動,求z=x+2y的最大值和最小值,并求出相應(yīng)的x、y值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為圓心的圓與直線3x-4y+5=0相切,求圓O的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,面積S△ABC=6.
(1)求△ABC的三邊的長a,b,c;
(2)設(shè)P是△ABC(不含邊界)內(nèi)的一點(diǎn),P到三邊AC、BC、AB的距離分別是x、y、z且
AP
=
AC
|
AC
|
+
AB
|
AB
|

①寫出x、y、z所滿足的等量關(guān)系;
②求
2
x
+
1
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AD為圓O的直徑,直線BA與圓O相切于點(diǎn)A,直線OB與弦AC垂直并相交于點(diǎn)G,與弧AC相交于M,連接DC,AB=10,AC=12.
(1)求證:BA•DC=GC•AD;
(2)求OA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x||x-1|<6},B={x|
x-8
2x-1
>0}
(1)求A∩B;
(2)求(∁UA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知BC為⊙O的直徑,點(diǎn)A、F在⊙O上,AD⊥BC,垂足為D,BF交AD于E,且AE=BE.
(1)求證:AB=AF;
(2)如果sin∠FBC=
3
5
,AB═4
5
,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:(
1
tan
α
2
-tan
α
2
)•
1-cos2α
sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x+1|+|x-1|≥a恒成立,則a的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案