分析 根據(jù)三角函數(shù)的對(duì)稱性,求a的取值,并將函數(shù)g(x)化為y=Asin(ωx+φ)(A≠0,ω≠0)的形式,運(yùn)用整體思想,當(dāng)g(x)的最大值時(shí),確定θ的取值,運(yùn)用誘導(dǎo)公式計(jì)算cosθ.
解答 解:函數(shù)f(x)=sinx+acosx圖象的一條對(duì)稱軸是x=$\frac{π}{4}$,
∴$f(0)=f(\frac{π}{2})$,即$sin0+acos0=sin\frac{π}{2}+acos\frac{π}{2}$
∴a=1
∴g(x)=sinx+sinx+cosx
=2sinx+cosx
=$\sqrt{5}(\frac{2\sqrt{5}}{5}sinx+\frac{\sqrt{5}}{5}cosx)$
令cosβ=$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{5}}{5}$ (β∈R)
則 g(x)=$\sqrt{5}(cosβsinx+sinβcosx)$=$\sqrt{5}sin(x+β)$
∵x+β∈R
∴當(dāng)sin(x+β)=1時(shí),g(x)取得最大值$\sqrt{5}$,
由題,此時(shí)x=θ.即sin(θ+β)=1,
∴$θ+β=\frac{π}{2}+2kπ,(k∈Z)$
∴$θ=\frac{π}{2}+2kπ-β$,(k∈Z)
∴$cosθ=cos(\frac{π}{2}+2kπ-β)$=sinβ=$\frac{\sqrt{5}}{5}$
故填:$\frac{{\sqrt{5}}}{5}$.
點(diǎn)評(píng) 考查三角函數(shù)對(duì)稱性,三角函數(shù)兩角和與差公式逆用(輔助角公式),三角函數(shù)誘導(dǎo)公式.考查一般到特殊的思想,整體思想.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{9}$ | B. | $\frac{10}{11}$ | C. | $\frac{11}{12}$ | D. | $\frac{32}{33}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com