12.如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB,點(diǎn)F滿足$\overrightarrow{AF}$=2$\overrightarrow{FE}$.
(1)求證:直線EC∥平面BDF;
(2)求二面角D-BF-A的余弦值.

分析 (1)連結(jié)AC,交BD于G,推導(dǎo)出EC∥FG,由此能證明直線EC∥平面BDF.
(2)設(shè)AB的中點(diǎn)為O以O(shè)D,OA,OE分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角D-BF-A的余弦值.

解答 證明:(1)連結(jié)AC,交BD于G,
∵AB∥CD,∴$\frac{CG}{GA}=\frac{CD}{AB}=\frac{1}{2}=\frac{EF}{FA}$,
∴EC∥FG,又EC?平面BDF,F(xiàn)G?平面BDF,
∴直線EC∥平面BDF.
解:(2)設(shè)AB的中點(diǎn)為O,∵△ABE是等腰三角形,
∴EO⊥AB,又平面EAB⊥平面ABCD,
∴EO⊥平面ABCD,連結(jié)OD,
則OB∥DC,且OB=DC,
∴OD∥BC,∴OD⊥AB,
如圖,以O(shè)D,OA,OE分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則A(0,1,0),B(0,-1,0),C(1,-1,0),D(1,0,0),E(0,0,1),
平面BFA的法向量$\overrightarrow{OD}$=(1,0,0),
設(shè)平面BFD的法向量是$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=x+y=0}\\{\overrightarrow{n}•\overrightarrow{GF}=-x+y+z=0}\end{array}\right.$,
令x=1,得$\overrightarrow{n}$=(1,-1,2),
cos<$\overrightarrow{n},\overrightarrow{OD}$>=$\frac{1}{1×\sqrt{1+1+4}}$=$\frac{\sqrt{6}}{6}$,
∴二面角D-BF-A的余弦值為$\frac{\sqrt{6}}{6}$.

點(diǎn)評 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知隨機(jī)變量X+Y=10,若X~B(10,0.8),則E(Y),D(Y)分別是(  )
A.8和1.6B.2和1.6C.8和8.4D.2和8.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若直線x+(1+m)y+m-2=0與直線2mx+4y+16=0沒有公共點(diǎn),則m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=log2tan($\frac{π}{4}$-x)的定義域是(-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“a=-2”是“函數(shù)f(x)=x2+ax+1(x∈R)只有一個零點(diǎn)”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線y=x2-7上存在關(guān)于直線x+y=0對稱的相異兩點(diǎn)A、B,則|AB|等于(  )
A.5B.$5\sqrt{2}$C.6D.$6\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知一個幾何體可切割成一個多面體及一個旋轉(zhuǎn)體的一部分,其三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{3}{2}$πB.π+1C.π+$\frac{1}{6}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x2-1|-ax-1(a∈R)
(1)若關(guān)于x的方程f(x)+x2+1=0在區(qū)間(0,2]上有兩個不同的解x1,x2
①求a的取值范圍;
②若x1<x2,求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[0,2]上的最大值和最小值分別為M(a),m(a),求g(a)=M(a)-m(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,則f(x)≤$\frac{1}{2}$的解集為{1}∪(1,1+$\sqrt{2}$].

查看答案和解析>>

同步練習(xí)冊答案