條件p:<2x<16,條件q:(x+2)(x+a)<0,若p是q的充分而不必要條件,則a的取值范圍是(  )

A.(4,+∞) B.[-4,+∞)

C.(-∞,-4] D.(-∞,-4)

 

D

【解析】由<2x<16,得2-2<2x<24,即-2<x<4.由p⇒q而qp可得(x+2)(x+a)<0⇒-2<x<-a且-a>4得a<-4,故選D.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學考前復習沖刺穿插滾動練習(一)(解析版) 題型:選擇題

先作函數(shù)y=lg的圖象關于原點對稱的圖象,再將所得圖象向右平移一個單位得圖象C1,函數(shù)y=f(x)的圖象C2與C1關于直線y=x對稱,則函數(shù)y=f(x)的解析式為(  )

A.y=10x B.y=10x-2

C.y=lg x D.y=lg(x-2)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第十章 算法初步、統(tǒng)計、統(tǒng)計案例(解析版) 題型:填空題

(2014·孝感模擬)一對年輕夫婦和其兩歲的孩子做游戲,讓孩子把分別寫有“1”“3”“1”“4”的四張卡片隨機排成一行,若卡片按從左到右的順序排成“1314”,則孩子會得到父母的獎勵,那么孩子得到獎勵的概率為__________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:解答題

已知a,b,c,d∈R,用分析法證明:ac+bd≤并指明等號何時成立.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:填空題

設a,b∈R,給出下列條件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1,其中能推出:“a,b中至少有一個實數(shù)大于1”的條件是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:選擇題

(2014·天門模擬)設P和Q是兩個集合,定義集合P+Q={x|x∈P或x∈Q且x∉P∩Q}.若P={x|x2-3x-4≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )

A.[-1,4]

B.(-∞,-1]∪[4,+∞)

C.(-3,5)

D.(-∞,-3)∪[-1,4]∪(5,+∞)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第八章 平面解析幾何(解析版) 題型:填空題

已知有公共焦點的橢圓與雙曲線中心為原點,焦點在x軸上,左右焦點分別為F1,F2,且它們在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,雙曲線的離心率的取值范圍為(1,2).則該橢圓的離心率的取值范圍是__________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第五章 數(shù)列(解析版) 題型:解答題

(2013·天津高考)已知首項為的等比數(shù)列{an}的前n項和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列.

(1)求數(shù)列{an}的通項公式.

(2)證明Sn+(n∈N*).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第二章 函數(shù)、導數(shù)及其應用(解析版) 題型:選擇題

(2014·嘉興模擬)已知a=,b=0.3-2,c=lo2,則a,b,c的大小關系是(  )

A.a>b>c B.a>c>b C.c>b>a D.b>a>c

 

查看答案和解析>>

同步練習冊答案