【題目】已知正項(xiàng)數(shù)列中,,點(diǎn)在拋物線上.數(shù)列中,點(diǎn)在經(jīng)過(guò)點(diǎn),以為方向向量的直線上.
(1)求數(shù)列,的通項(xiàng)公式;
(2)若,問(wèn)是否存在,使得成立?若存在,求出的值;若不存在,說(shuō)明理由;
(3)對(duì)任意的正整數(shù),不等式成立,求正數(shù)的取值范圍.
【答案】(1),;(2)存在,;(3)
【解析】
(1)將坐標(biāo)代入拋物線方程得數(shù)列是等差數(shù)列,從而得通項(xiàng)公式,求出直線方程后可得;
(2)分類(lèi)討論,按的奇偶性分類(lèi)討論即可求解;
(3)不等式可變形為,然后設(shè), 利用確定的單調(diào)性得其最小值,即得的取值范圍.
(1)將點(diǎn)代入拋物線得:
數(shù)列是等差數(shù)列.
,即
為直線的方向向量直線的斜率,直線的方程為
在直線上.
(2)由題
①當(dāng)是偶數(shù)時(shí),是奇數(shù),即,
②當(dāng)是奇數(shù)時(shí),是偶數(shù),即(舍去).
故存在唯一的符合條件.
(3)由題,即
設(shè),
則
,即數(shù)列是遞增數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在處的切線為.
(Ⅰ)求實(shí)數(shù),的值;
(Ⅱ)若不等式對(duì)任意恒成立,求的取值范圍;
(Ⅲ)設(shè)其中,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓臺(tái)的軸截面為等腰梯形,,,,圓臺(tái)的側(cè)面積為.若點(diǎn)C,D分別為圓,上的動(dòng)點(diǎn)且點(diǎn)C,D在平面的同側(cè).
(1)求證:;
(2)若,則當(dāng)三棱錐的體積取最大值時(shí),求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線平面,垂足為,正四面體的棱長(zhǎng)為2,,分別是直線和平面上的動(dòng)點(diǎn),且,則下列判斷:①點(diǎn)到棱中點(diǎn)的距離的最大值為;②正四面體在平面上的射影面積的最大值為.其中正確的說(shuō)法是( ).
A.①②都正確B.①②都錯(cuò)誤C.①正確,②錯(cuò)誤D.①錯(cuò)誤,②正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐,是等邊三角形,,,,,是的中點(diǎn).
(Ⅰ)證明:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為正整數(shù),各項(xiàng)均為正整數(shù)的數(shù)列滿足:,記數(shù)列的前項(xiàng)和為.
(1)若,求的值;
(2)若,求的值;
(3)若為奇數(shù),求證:“”的充要條件是“為奇數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是軸上的動(dòng)點(diǎn)(異于原點(diǎn)),點(diǎn)在圓上,且.設(shè)線段的中點(diǎn)為,當(dāng)點(diǎn)移動(dòng)時(shí),記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)當(dāng)直線與圓相切于點(diǎn),且點(diǎn)在第一象限.
(ⅰ)求直線的斜率;
(ⅱ)直線平行,交曲線于不同的兩點(diǎn)、.線段的中點(diǎn)為,直線與曲線交于兩點(diǎn)、,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).設(shè)直線與的交點(diǎn)為,當(dāng)變化時(shí)的點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為且,點(diǎn)是射線與曲線的交點(diǎn),求點(diǎn)的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為正方形,,為等邊三角形,線段的中點(diǎn)為,若,則此四棱錐的外接球的表面積為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com