已知函數(shù)f(x)=lnx+ax+2(a∈R),在x=
1
2
時(shí)取得極值.
(Ⅰ)求a的值;
(Ⅱ)若F(x)=λx2-3x+2-f(x)(λ>0)有唯一零點(diǎn),求λ的值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),利用在x=
1
2
時(shí)取得極值,可得f′(
1
2
)=2+a=0,即可求a的值.
(Ⅱ)由(Ⅰ)知f(x)=lnx-2x+2則F(x)=λx2-lnx-x,則F′(x)=
x2-x-1
x
.令F'(x)=0,2λx2-x-1=0.由此進(jìn)行分類討論,能求出λ.
解答: 解:(Ⅰ)依題意f′(x)=
1
x
+a.
因?yàn)樵趚=
1
2
時(shí)取得極值,所以f′(
1
2
)=2+a=0,則a=-2…(2分)
經(jīng)檢驗(yàn),a=-2滿足題意.…(4分)
(Ⅱ)由(Ⅰ)知f(x)=lnx-2x+2則F(x)=λx2-lnx-x,
則F′(x)=
x2-x-1
x

令F'(x)=0,2λx2-x-1=0.
因?yàn)棣耍?,所以△=1+8λ>0,
方程有兩異號(hào)根設(shè)為x1<0,x2>0.
因?yàn)閤>0,所以x1應(yīng)舍去.
當(dāng)x∈(0,x2)時(shí),F(xiàn)'(x)<0,F(xiàn)(x)在(0,x2)上單調(diào)遞減;
當(dāng)x∈(x2,+∞)時(shí),F(xiàn)'(x)>0,F(xiàn)(x)在(x2,+∞)單調(diào)遞增.
當(dāng)x=x2時(shí),F(xiàn)'(x2)=0,F(xiàn)(x)取最小值F(x2).…(9分)
因?yàn)镕(x)=0有唯一解,所以F(x2)=0,
λx22-lnx2-x2=0
x22-x2-1=0

因?yàn)棣耍?,所以2lnx2+x2-1=0(*)
設(shè)函數(shù)h(x)=2lnx+x-1,因?yàn)楫?dāng)x>0時(shí),
h(x)是增函數(shù),所以h(x)=0至多有一解.
因?yàn)閔(1)=0,所以方程(*)的解為x2=1,
代入方程組解得λ=1.…(12分)
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性、極值、零點(diǎn)等知識(shí)點(diǎn)的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)為(1,3),端點(diǎn)A在圓C:(x+1)2+y2=4上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)M的軌跡;
(2)過B點(diǎn)的直線L與圓C有兩個(gè)交點(diǎn)A,D.當(dāng)CA⊥CD時(shí),求L的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年春節(jié)期間,高速公路車輛劇增,高速公路管理測(cè)控中心在一特定位置從七座以下小型汽車中按先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛進(jìn)行電子測(cè)速調(diào)查,將它們的車速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如圖的頻率分布直圖.
(1)測(cè)控中心在采樣中,用到的是什么抽樣方法?并估計(jì)這40輛車車速的平均數(shù);
(2)從車速在[80,90)的車輛中任抽取2輛,求抽出的2輛車中車速在[85,90)的車輛數(shù)的概率.參考數(shù)據(jù):82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為不等于0的實(shí)數(shù),函數(shù)f(x)=(x2+ax)ex在(-∞,0)上有且僅有一個(gè)極值點(diǎn)x0
(Ⅰ)求a的取值范圍;
(Ⅱ)(。┣笞C:-2<x0<-1;
(ⅱ)設(shè)g(x)=
a
x+1
,若x1∈(-∞,0),x2∈[0,+∞),記|f(x1)-g(x2)|的最大值為M,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅游景點(diǎn)預(yù)計(jì)2013年1月份起第x月的旅游人數(shù)p(x)(單位:萬人)與x的關(guān)系近似地滿足p(x)=-3x2+40x(x∈N*,1≤x≤12),已知第x月的人均消費(fèi)額q(x)(單位:元)與x的近似關(guān)系是q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)
,試問2013年第幾月旅游消費(fèi)總額最大,最大月旅游消費(fèi)總額為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:方程
x2
2
+
y2
m
=1表示雙曲線;q:函數(shù)y=x2+2mx+1與x軸無公共點(diǎn),若¬p和p∧q都是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點(diǎn)E、F分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EF⊥AC,EF∩AC=O,AC∩BD=H.沿EF將△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED.

(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)當(dāng)PB取得最小值時(shí),請(qǐng)解答以下問題:(提示:設(shè)OH=x)
(。┣笏睦忮FP-BDEF的體積;
(ⅱ)若點(diǎn)Q在線段AP上,試探究:直線OQ與平面E所成角是否一定大于或等于45°?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+y2=16內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A,B兩點(diǎn).
(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程;
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為2,線段EF,GH分別在AB,CC1上移動(dòng),且EF+GH=
1
2
,則三棱錐EFGH的體積最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案