2014年春節(jié)期間,高速公路車輛劇增,高速公路管理測控中心在一特定位置從七座以下小型汽車中按先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛進行電子測速調(diào)查,將它們的車速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如圖的頻率分布直圖.
(1)測控中心在采樣中,用到的是什么抽樣方法?并估計這40輛車車速的平均數(shù);
(2)從車速在[80,90)的車輛中任抽取2輛,求抽出的2輛車中車速在[85,90)的車輛數(shù)的概率.參考數(shù)據(jù):82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.
考點:古典概型及其概率計算公式,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)根據(jù)系統(tǒng)抽樣的特征判斷抽樣方法是系統(tǒng)抽樣;根據(jù)中位數(shù)的左、右兩邊小矩形的面積相等求中位數(shù);
(2)利用頻數(shù)=頻率×樣本容量分別求得車速在[80,85)的車輛數(shù)和車速在[85,90)車輛數(shù),用列舉法寫出從這6輛車中隨機抽取2輛的所有基本事件,找出抽出的2輛車中車速在[85,90)的基本事件,利用個數(shù)比求概率.
解答: 解:(1)根據(jù)“某段高速公路的車速分成六段”,符合系統(tǒng)抽樣的原理,故此調(diào)查公司在采樣中,用到的是系統(tǒng)抽樣方法.( 注意每間隔50輛就抽取一輛這一條件)
平均數(shù)的估計值為:(82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02)×5=97.
(2)從圖中可知,車速在[80,85)的車輛數(shù)為0.01×5×40=2(輛),分別記為m,n;
車速在[85,90)車輛數(shù)為0.02×5×40=4(輛),分別記為A,B,C,D,
從這6輛車中隨機抽取2輛共有mn,mA,mB,mC,mD,nA,nB,nC,nD,AB,AC,AD,BC,BD,CD共15種情況,抽出的2輛車中車速在[85,90)的車輛數(shù)AB,AC,AD,BC,BD,CD共6種,故所求的概率P=
6
15
=
2
5
點評:本題考查了由頻率分布直方圖求中位數(shù)及頻數(shù),考查了古典概型的概率計算,利用列舉法求基本事件個數(shù),是進行古典概型概率計算的常用方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(π-x),x∈R.
(1)求函數(shù)f2(x)+cos2(π+x)的值;
(2)若f(α)=
3
5
,α∈[0,
π
2
],求f(α-
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(Ⅰ)若a=0,F(xiàn)(x)=f(x)-g(x),求函數(shù)F(x)的極值點及相應(yīng)的極值;
(Ⅱ)若對于任意x2>0,存在x1滿足x1<x2且g(x1)=f(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|-3≤x<1},函數(shù)f(x)=log2(x+3)的定義域為B,求:
(1)A∩B,A∪B;
(2)A∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=(x-1)2+blnx,其中b為常數(shù).
(1)當b>
1
2
時,判斷函數(shù)f(x)在定義域上的單調(diào)性;
(2)若函數(shù)f(x)的有極值點,求b的取值范圍及f(x)的極值點;
(3)若b=-1,試利用(2)求證:n≥3時,恒有
1
n2
<ln(n+1)-lnn<
1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax+2在點(1,f(1))處的切線與直線l:x-y-1=0垂直,
(1)求實數(shù)a的值和函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(n)=1+
1
2
+
1
3
+…+
1
n
,h(n)=lnn,數(shù)列{an}:an=2g(n)-h(n),求實數(shù)m的取值范圍,使對任意n∈N*,不等式an>log2m-4logm2-1恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F(xiàn),O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為
3
4

(1)求拋物線C的方程.
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+ax+2(a∈R),在x=
1
2
時取得極值.
(Ⅰ)求a的值;
(Ⅱ)若F(x)=λx2-3x+2-f(x)(λ>0)有唯一零點,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.求動圓圓心的軌跡C的方程.

查看答案和解析>>

同步練習冊答案