已知兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)的和分別為Sn,Tn,且
Sn
Tn
7n+2
n+3
,則 
a5
b5
=
65
12
65
12
分析:令n=9,代入已知的等式,求出
S9
T9
的值,然后利用等差數(shù)列的求和公式分別表示出S9和T9,利用等差數(shù)列的性質(zhì)得到a1+a9=2a5及b1+b9=2b5,化簡(jiǎn)后即可得到
a5
b5
的值.
解答:解:令n=9,得到
S9
T9
=
7×9+2
9+3
=
65
12
,
又S9=
9(a1+a9
2
=9a5,T9=
9(b1+b9
2
=9b5,
S9
T9
=
9a5
9b5
=
a5
b5
=
65
12

故答案為:
65
12
點(diǎn)評(píng):此題考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的前n項(xiàng)和公式,熟練掌握性質(zhì)及求和公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)等差數(shù)列5,8,11,…和3,7,11,…都有100項(xiàng),則它們的公共項(xiàng)的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別是An和Bn,且
An
Bn
=
2n+1
n+3
,則
a9
b9
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別An和Bn,且
An
Bn
=
7n+45
n+3
,則使得
an
bn
為整數(shù)的正整數(shù)n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別是An,Bn,且
An
Bn
=
7n+45
n+3
,則
a4
b4
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)等差數(shù)列{ a n }和{ b n }的前n項(xiàng)和S n,T n的比=。則=       。(用n表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案