【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,,,, ,為的中點.
(1)平面平面
(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長度;若不存在,請說明理由.
【答案】(1)見解析;(2)
【解析】
(1)由四邊形為矩形,所以,再由勾股定理,得到,利用線面垂直的判定定理,證得平面,進而得到平面平面.
(2)建立空間直角坐標系,求得平面的法向量為,又由平面的法向量,利用向量的夾角公式,即可求解,得到結(jié)論.
(1)證明:由題意知,四邊形為矩形,所以,
又∵四邊形為菱形,為中點,
所以,,,所以,所以,
又,所以平面,又平面,
所以平面平面
(2)假設(shè)線段上存在點,使二面角的大小為,在上取一點,
連接,.
由于四邊形是菱形,且,是的中點,可得.
又四邊形是矩形,平面平面,∴平面,
所以建立如圖所示的空間直角坐標系
則,,,,
則,,設(shè)平面的法向量為,
則,∴,令,則,
又平面的法向量,
所以,解得,
所以在線段上存在點,使二面角的大小為,此時.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x-1|.
(1)當m=-1時,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓錐的頂點為S,底面圓O的兩條直徑分別為AB和CD,且AB⊥CD,若平面平面.現(xiàn)有以下四個結(jié)論:
①AD∥平面SBC;
②;
③若E是底面圓周上的動點,則△SAE的最大面積等于△SAB的面積;
④與平面SCD所成的角為45°.
其中正確結(jié)論的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點 ,且離心率為.設(shè)為橢圓的左、右頂點,P為橢圓上異于的一點,直線分別與直線相交于兩點,且直線與橢圓交于另一點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求證:直線與的斜率之積為定值;
(Ⅲ)判斷三點是否共線,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com