雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
1+
5
2
,點A與F分別是雙曲線的左頂點和右焦點,B(0,b),則∠ABF等于( 。
A、45°B、60°
C、90°D、120°
分析:由離心率能夠得出b2=ac,再根據(jù)題意得出|AF|=a+c|BF|=c,|AB|2=a2+b2,進而判斷BF|2+|AB|2=|AF|2,從而得出
∠ABF等于90°.
解答:解:由題意知因為e=
c
a
=
1+
5
2

c2
a2
=
6+2
5
4
=
a2+b2
a2
=1+
b2
a2

b2
a2
=
1+
5
2
=
c
a

∴b2=ac
∵|AF|=a+c|BF|=c,在直角三角形BOF中易得|BF|2=c2+b2
∴|AF|2=a2+2ac+c2|AB|2=a2+b2 
又∵上面推出b^2=ac,
故|BF|2=c2+b2=c2+ac
顯然|BF|2+|AB|2=|AF|2
∴∠ABF=90°
故選C.
點評:本題考查了橢圓的性質(zhì),由離心率能夠得出b2=ac,是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點,點P為雙曲線右支上的任意一點,則
OP
FP
的取值范圍為(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點,且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點,點P為雙曲線右支上的一點,并且P點與右焦點F′的連線垂直x軸,則線段OP的長為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個焦點坐標為(-
3
,0)
,則其漸近線方程為( 。
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習冊答案