2.在△ABC中,三個內(nèi)角A,B,C所對的邊分別是a,b,c,若b2=a2+ac+c2,則角B=120°.

分析 根據(jù)題意由余弦定理b2=a2+c2-2accosB,可求得cosB的值,再利用B為△ABC中的角,即可求得B.

解答 解:∵在△ABC中,b2=a2+ac+c2,又b2=a2+c2-2accosB
∴-2accosB=ac,
∴cosB=-$\frac{1}{2}$,又∠A為△ABC中的角,
∴A=120°.
故答案為:120°.

點(diǎn)評 本題考查余弦定理,考查學(xué)生記憶與應(yīng)用公示的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.?dāng)?shù)列{an}前n項(xiàng)和為Sn,a1=1,a2=3,且an+2=|an+1-an|(n∈N*),則S2015=( 。
A.1342B.1344C.1346D.1348

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合U={0,1,2,3},A={0,1,2},B={2,3},則(∁UA)∩B( 。
A.{1,3}B.{2,3}C.{3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a、b為正整數(shù).設(shè)兩直線11:y=b-$\frac{a}$x與12:y=$\frac{a}$x的交點(diǎn)為P1(x1,y1),且對于n≥2的自然數(shù),兩點(diǎn)(0,b),(xn-1,0)的連線與直線y=$\frac{a}$x的交點(diǎn)為Pn(xn,yn
(1)求P1,P2的坐標(biāo);
(2)猜想Pn的坐標(biāo)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若A=60°,c=4,a=4,則此三角形有(  )
A.兩解B.一解C.無解D.無窮多解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知cos(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{4}$,則$\frac{cos2α}{sinα+cosα}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線C:x2=2px的準(zhǔn)線方程y=-$\frac{1}{2}$,該拋物線上的每個點(diǎn)到準(zhǔn)線的距離都與到定點(diǎn)N的距離相等.
(1)求以N為圓心且與直線y=x相切的方程;
(2)經(jīng)過點(diǎn)N的直線交拋物線C于A、B兩點(diǎn),點(diǎn)E在拋物線的準(zhǔn)線上,且BE∥y軸.證明:直線AE經(jīng)過原點(diǎn)O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=3tan($\frac{1}{2}$x-$\frac{π}{3}$).
(1)求f(x)的定義域和值域.
(2)討論f(x)的周期和單調(diào)區(qū)間.
(3)求f(x)的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知α角為第二象限角,點(diǎn)P(k,3)在α的終邊上,且OP=5,求cosα、tanα的值.

查看答案和解析>>

同步練習(xí)冊答案