關(guān)于x的一元二次方程mx2-(1-m)x+m=0有實(shí)數(shù)根,求m的取值范圍.
分析:由題意可得它的判別式△=(1-m)2-4m•m≥0,由此求得m的取值范圍.
解答:解:由于關(guān)于x的一元二次方程mx2-(1-m)x+m=0有實(shí)數(shù)根,故它的判別式△=(1-m)2-4m•m≥0,
求得-1≤m≤
1
3
,故m的范圍為[-1,
1
3
].
點(diǎn)評(píng):本題主要考查一元二次方程有解的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知有序?qū)崝?shù)對(duì)(a,b)滿(mǎn)足a∈[O,3],b∈[0,2],則關(guān)于x的一元二次方程x2+2ax+b2=0有實(shí)數(shù)根的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的一元二次方程mx2+(m-1)x+m=0沒(méi)有實(shí)數(shù)根,則m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求證:不論為任何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的兩根為x1,x2,且滿(mǎn)足
1
x1
+
1
x2
=-
1
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的一元二次方程x2+tx+|a+2|+|a-1|=0對(duì)任意a∈R無(wú)實(shí)根,求實(shí)數(shù)t的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案