13.直線y=$\sqrt{3}$x+1的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由方程可得直線的斜率,由斜率和傾斜角的關系可得所求.

解答 解:∵直線y=$\sqrt{3}$x+1的斜率為$\sqrt{3}$,
∴直線y=$\sqrt{3}$x+1的傾斜角α滿足tanα=$\sqrt{3}$,
∴α=60°
故選:B

點評 本題考查直線的傾斜角和斜率,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(-x),x<0\\{2^x},x≥0\end{array}\right.$,若關于x的方程f2(x)-af(x)=0恰有三個不同的實數(shù)根,則實數(shù)a的取值范圍是(  )
A.[0,+∞)B.(0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為(  )
A.8+$\frac{π}{2}$+$\sqrt{7}$B.8+$\frac{3π}{2}$+$\sqrt{7}$C.6+$\frac{3π}{2}$+$\sqrt{3}$D.6+$\frac{π}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在以“菊韻荊門,榮耀中華”為主題的“中國•荊門菊花展”上,工作人員要將6盆不同品種的菊花排成一排,其中甲,乙在丙同側的不同排法種數(shù)為( 。
A.120B.240C.360D.480

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某網(wǎng)站對“愛飛客”飛行大會的日關注量x(萬人)與日點贊量y(萬次)進行了統(tǒng)計對比,得到表格如下:
x35679
y23345
由散點圖象知,可以用回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$來近似刻畫它們之間的關系.
(Ⅰ)求出y關于x的回歸直線方程,并預測日關注量為10萬人時的日點贊量;
(Ⅱ)一個三口之家參加“愛飛客”親子游戲,游戲規(guī)定:三人依次從裝有3個白球和2個紅球的箱子中不放回地各摸出一個球,大人摸出每個紅球得獎金10元,小孩摸出1個紅球得獎金50元.求該三口之家所得獎金總額不低于50元的概率.
參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;    參考數(shù)據(jù):$\sum_{i=1}^{5}$xi2=200,$\sum_{i=1}^{5}$xiyi=112.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設點F1、F2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(O為坐標原點),以O為圓心,|F1F2|為直徑的圓交雙曲線于點M(第一象限).若過點M作x軸的垂線,垂足恰為線段OF2的中點,則雙曲線的離心率是( 。
A.$\sqrt{3}$-1B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,G分別是PA,PB,BC的中點;
(1)求直線EF與平面PAD所成角的大。
(2)若M為線段AB上一動點,問當AM長度等于多少時,直線MF與平面EFG所成角的正弦值等于$\frac{\sqrt{15}}{5}$?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若C⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若函數(shù)f(x)=$\frac{(2+m)x}{{x}^{2}-m}$的圖象如圖所示,則m的范圍為( 。
A.(1,+∞)B.(-2,-1)C.(-2,0)D.(-2,1)

查看答案和解析>>

同步練習冊答案