A. | $\sqrt{3}$-1 | B. | $\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | 2 |
分析 由題意M的坐標(biāo)為M( $\frac{c}{2}$,$\frac{\sqrt{3}c}{2}$),代入雙曲線方程可得e的方程,即可求出雙曲線的離心率.
解答 解:由題意點(diǎn)F1、F2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)(O為坐標(biāo)原點(diǎn)),以O(shè)為圓心,|F1F2|為直徑的圓交雙曲線于點(diǎn)M(第一象限).若過(guò)點(diǎn)M作x軸的垂線,垂足恰為線段OF2的中點(diǎn),
△OMF2是正三角形,M的坐標(biāo)為M( $\frac{c}{2}$,$\frac{\sqrt{3}c}{2}$),代入雙曲線方程可得$\frac{{c}^{2}}{4{a}^{2}}$-$\frac{3{c}^{2}}{4^{2}}$=1
∴e4-8e2+4=0,
∴e2=4+2$\sqrt{3}$
∴e=$\sqrt{3}$+1.
故選:C.
點(diǎn)評(píng) 本題考查雙曲線與圓的性質(zhì),考查學(xué)生的轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈R,2${\;}^{{x}_{0}}$>0 | B. | ?x0∈R,2${\;}^{{x}_{0}}$≤0 | C. | ?x∈R,2x<0 | D. | ?x∈R,2x≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$單位 | B. | 向右平移$\frac{π}{3}$單位 | C. | 向左平移$\frac{π}{6}$單位 | D. | 向右平移$\frac{π}{6}$單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com