設(shè)數(shù)列的前項(xiàng)和為,且 ;數(shù)列為等差數(shù)列,且 .
(1)求數(shù)列的通項(xiàng)公式;
(2)若(=1,2, 3…),為數(shù)列的前項(xiàng)和.求.
(1);(2).
【解析】第一問(wèn)中利用數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系式可知,由,令,則,又, 所以
當(dāng)時(shí),由,可得,即,進(jìn)而得到數(shù)列的通項(xiàng)公式。
第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061919424501649229/SYS201206191944241726567091_DA.files/image012.png">,然后利用錯(cuò)位相減法得到結(jié)論。
解:(1)由,令,則,又, 所以 …2分
當(dāng)時(shí),由,可得,即 …4分
所以是以為首項(xiàng),為公比的等比數(shù)列,于是 …………6分
(2)數(shù)列為等差數(shù)列,公差,可得…………7分
從而,
………………13分
. ……………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年長(zhǎng)沙一中一模文)(13分) 設(shè)數(shù)列的前項(xiàng)和為,且,其中為常數(shù)且.
(1)證明:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比,數(shù)列滿足,(
求數(shù)列的通項(xiàng)公式;
(3)設(shè),,數(shù)列的前項(xiàng)和為,求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省佛山一中2010-2011學(xué)年高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本題滿分14分).設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列的每?jī)身?xiàng)之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:與兩項(xiàng)之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市海淀區(qū)高三5月查漏補(bǔ)缺數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且滿足.
(Ⅰ)求證:數(shù)列為等比數(shù)列;
(Ⅱ)求通項(xiàng)公式;
(Ⅲ)若數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年新疆烏魯木齊一中高三第一次月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為,且對(duì)于
任意的正整數(shù)都成立,其中為常數(shù),且
(1)求證:數(shù)列是等比數(shù)列(4分)
(2)設(shè)數(shù)列的公比,數(shù)列滿足:,)(,
,求證:數(shù)列是等差數(shù)列,并求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com