13.已知a=log20.5,b=20.5,c=0.52,則a、b、c的大小關(guān)系是(  )
A.a<c<bB.a<b<cC.b<c<aD.c<a<b

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=log20.3<0,b=20.5>1,c=0.52∈(0,1),
∴b>c>a.
故選:A.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=i(3-4i)的虛部與模的和(  )
A.8B.9C.5+3iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{-x+1(x<0)}\end{array}\right.$,則f(-1)的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,$0<φ<\frac{π}{2}$)的周期為π,且圖象上一個(gè)最低點(diǎn)為$M({\frac{2π}{3}\;,\;\;-2})$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)$x∈[{0\;,\;\;\frac{π}{12}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平行四邊形ABCD中,AC為一條對(duì)角線,$\overrightarrow{AB}=({2\;,\;\;4})$,$\overrightarrow{AC}=({1\;,\;\;3})$,則$\overrightarrow{DA}$=(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=x2和g(x)=lnx,作一條平行于y軸的直線,交f(x),g(x)圖象于A,B兩點(diǎn),則|AB|的最小值為$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知z=(m+3)+(m-1)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限,則實(shí)數(shù)m的取值范圍是( 。
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.給出下列3個(gè)命題:
命題p:若a2≥20,則方程x2+y2+ax+5=0表示一個(gè)圓.
命題q:?m∈(-∞,0),方程0.1x+msinx=0總有實(shí)數(shù)解.
命題r:?m∈(1,3),msinx+mcosx=3$\sqrt{2}$.
那么,下列命題為真命題的是(  )
A.p∨rB.p∧(¬q)C.(¬q)∧(¬r)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.三棱柱各面所在平面將空間分成( 。┎糠郑
A.18B.21C.24D.27

查看答案和解析>>

同步練習(xí)冊答案