如圖,已知四邊形 ABCD 是矩形,AB=2BC=2,三角形 PAB 是正三角形,且 平面 ABCD⊥平面 PCD.
(1)若 O 是 CD 的中點,證明:BO⊥PA;
(2)求二面角 B-PA-D 的余弦值.

【答案】分析:(1)通過建立空間直角坐標系,利用異面直線的方向向量的夾角即可證明;
(2)利用兩個平面的法向量的夾角即可得出二面角的大小.
解答:(1)證明:∵平面 ABCD⊥平面 PCD,平面 ABCD∩平面 PCD=CD,四邊形 ABCD 是矩形.
∴AD⊥平面PCD,BC⊥平面PCD,
在Rt△PDA與在Rt△PBC中,AD=BC,PB=PA,∴PC=PD=
若 O 是 CD 的中點,OP⊥CD.

建立如圖所示的空間直角坐標系,AB=2BC=2.
則O(0,0,0),B(1,0,1),A(-1,0,1),P(0,,0).

==0,
,∴BO⊥PA.
(2)由(1)可知:
設(shè)平面BPA的法向量為,
,得,取y1=1,則,x1=0.
∴平面BPA的一個法向量為
,設(shè)平面PAD的法向量為
,則,取y2=1,則,z2=0.

===
由圖可以看出:二面角 B-PA-D 是一個鈍角,故其余弦值為
點評:熟練掌握通過建立空間直角坐標系,利用異面直線的方向向量的夾角=0證明異面直線垂直;利用兩個平面的法向量的夾角得出二面角的方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD在映射f:(x,y)→(x+1,2y)作用下的象集為四邊形A1B1C1D1,若四邊形A1B1C1D1的面積是12,則四邊形ABCD的面積是( 。
A、9
B、6
C、6
3
D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的直觀圖是直角梯形A1B1C1D1,且A1B1=B1C1=2A1D1=2,則四邊形ABCD的面積為( 。
精英家教網(wǎng)
A、3
B、3
2
C、6
2
D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點B到點P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD是邊長為4cm的正方形,直線AD垂直于以AB為直徑的圓所在的平面,點E是該圓上異于A,B的一點,連接AE、BE、DE、CE.
(1)求證:平面ADE⊥平面BCE;
(2)若∠BAE=30°,求幾何體CD-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A(2,0),B(1,0),點D,E同時從點B出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.設(shè)∠BOD=θ,0≤θ<2π
(Ⅰ)當∠BOD=
π6
,求四邊形ODAE的面積;
(Ⅱ)將D、E兩點間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案