解答:解:(1)由已知得函數(shù)F(x)的定義域?yàn)閧x|x>1},
當(dāng)n=2時(shí),F(xiàn)(x)=
+aln(x-1),所以F′(x)=
,
①當(dāng)a>0時(shí),由F′(x)=0得x
1=1+
>1,x
2=1-
<1,
此時(shí)F′(x)=
,
當(dāng)x∈(1,x
1)時(shí),F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減;
當(dāng)x∈(x
1,+∞)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增;
從而F(x)在x
1=1+
處取得極小值,極小值為:F(1+
)=
(1+ln
),
②當(dāng)a≤0時(shí),F(xiàn)′(x)<0恒成立,所以F(x)無極值.
綜上所述,n=2時(shí);
當(dāng)a>0時(shí),F(xiàn)(x)在x=1+
處取得極小值,極小值為F(1+
)=
(1+ln
)
當(dāng)a≤0時(shí),函數(shù)為減函數(shù),F(xiàn)(x)無極值;
(2)當(dāng)x≥2時(shí),對(duì)任意的正整數(shù)n,恒有f(s)=
≤1,故對(duì)任意的正整數(shù)n,當(dāng)s≥2,x≥2時(shí),
有f(s)+g(x)≤x-1,只需1≤x-1-aln(x-1),即只需x-2-aln(x-1)≥0對(duì)x≥2成立,
令h(x)=x-2-aln(x-1),因?yàn)閔′(x)=1-
=
(x≥2),又h(2)=0,
所以當(dāng)x∈[2,+∞)時(shí),h(x)≥h(2),即h(x)當(dāng)x∈[2,+∞)時(shí)最小值為h(2)=0,
①當(dāng)a≤1,h′(x)=
≥0,h(x)當(dāng)x∈[2,+∞)單調(diào)遞增,結(jié)論成立;
②當(dāng)a>1時(shí),當(dāng)x∈[2,1+a),h′(x)<0,x∈[1+a,+∞),h′(x)≥0,又h(2)=0,
故結(jié)論不成立,
綜合得a≤1;