12.已知x與y之間的一組數(shù)據(jù):
x0246
ya353a
已求得關(guān)于y與x的線性回歸方程$\stackrel{∧}{y}$=1.2x+0.55,則a的值為2.15.

分析 首先求出這組數(shù)據(jù)的橫標(biāo)和縱標(biāo)的平均數(shù),寫出這組數(shù)據(jù)的樣本中心點(diǎn),把樣本中心點(diǎn)代入線性回歸方程求出a的值.

解答 解:$\overline{x}$=3,$\overline{y}$=a+2,
將(3,a+2)帶入方程得:
a+2=3.6+0.55,解得:a=2.15,
故答案為:2.15.

點(diǎn)評(píng) 本題考查回歸分析,考查樣本中心點(diǎn)滿足回歸直線的方程,考查求一組數(shù)據(jù)的平均數(shù),是一個(gè)運(yùn)算量比較小的題目,并且題目所用的原理不復(fù)雜,是一個(gè)好題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=x|x-2|.若關(guān)于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10個(gè)不同實(shí)數(shù)解,則a的取值范圍為( 。
A.(0,2)B.(-2,0)C.(1,2)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z=(2m-8)+(m-2)i是純虛數(shù),則實(shí)數(shù)m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{a}{x}-{e^{-x}}(a∈R$且x>0).若存在實(shí)數(shù)p,q(p<q),使得f(x)≤0的解集恰好為[p,q],則a的取值范圍是( 。
A.(0,$\frac{1}{e}$]B.(一∞,$\frac{1}{e}$]C.(0,$\frac{1}{e}$)D.(一∞,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$sin(α+\frac{π}{5})=\frac{{\sqrt{3}}}{3}$,則$cos(2α+\frac{2π}{5})$=( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若公差為2的等差數(shù)列{an}的前9項(xiàng)和為81,則a9=( 。
A.1B.9C.17D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,2bcosC-c=2a.
(Ⅰ)求B的大;
(Ⅱ)若a=3,且AC邊上的中線長(zhǎng)為$\frac{{\sqrt{19}}}{2}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{2}$sin2xtanx+2sinxtan$\frac{x}{2}$的值域?yàn)椋ā 。?table class="qanwser">A.[0,4]B.[0,4)C.[0,3)∪(3,4]D.[0,3)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax2
(Ⅰ)記m(x)=f′(x),若m′(1)=3,求實(shí)數(shù)a的值;
(Ⅱ已知函數(shù)g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案