17.若公差為2的等差數(shù)列{an}的前9項(xiàng)和為81,則a9=( 。
A.1B.9C.17D.19

分析 利用等差數(shù)列前n項(xiàng)和公式求出首項(xiàng),由此能求出第9項(xiàng).

解答 解:∵公差為2的等差數(shù)列{an}的前9項(xiàng)和為81,
∴${S_9}=9{a_1}+\frac{9×8}{2}×2=81$,
解得a1=1,
∴a9=1+(9-1)×2=17.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的第9項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.集合A={x|x2-3x+2=0},B={0,1},則A∪B=(  )
A.{1}B.{0,1,2}C.(1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線C:y2=-4x.
(Ⅰ)已知點(diǎn)M在拋物線C上,它與焦點(diǎn)的距離等于5,求點(diǎn)M的坐標(biāo);
(Ⅱ)直線l過(guò)定點(diǎn)P(1,2),斜率為k,當(dāng)k為何值時(shí),直線l與拋物線:只有一個(gè)公共點(diǎn);兩個(gè)公共點(diǎn);沒(méi)有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{x}^{2}+ax-lnx}{{e}^{x}}$(其中e是自然對(duì)數(shù)的底數(shù),a∈R).
( I)若曲線f(x)在x=l處的切線與x軸不平行,求a的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x與y之間的一組數(shù)據(jù):
x0246
ya353a
已求得關(guān)于y與x的線性回歸方程$\stackrel{∧}{y}$=1.2x+0.55,則a的值為2.15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ 2x-y-2≥0\end{array}\right.$,則z=x+2y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,若A=60°,b=8,S△ABC=12$\sqrt{3}$,則a=2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知P為拋物線y2=4x上任意一點(diǎn),拋物線的焦點(diǎn)為F,點(diǎn)A(2,1)是平面內(nèi)一點(diǎn),則|PA|+|PF|的最小值為( 。
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.拋物線y=4x2的焦點(diǎn)到準(zhǔn)線的距離為(  )
A.2B.$\frac{1}{8}$C.4D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案