19.如圖是一個幾何體的側(cè)視圖和俯視圖,已知俯視圖中的兩個而矩形是全等的,且該幾何體的正視圖是一個正方形,則該幾何體的表面積為4$+4\sqrt{3}$.

分析 根據(jù)該幾何體的三視圖所示,該幾何體是一個平放的直三棱柱,其底面為等腰三角形,面積可求;有兩個側(cè)面是長方形,面積相等,長寬為2,1,有一個面長方形長寬是2$\sqrt{3}$和1.即可求該幾何體的表面積.

解答 解:該幾何體的三視圖所示,該幾何體是一個平放的直三棱柱,(如圖所示),其底面為等腰三角形.
${S}_{底}=1×2\sqrt{3}×\frac{1}{2}$×2=2$\sqrt{3}$,有兩個側(cè)面是面積相等的長方形,長寬為2和1,其面積為2×1×2=4;有一個大的側(cè)面也是長方形,長寬是2$\sqrt{3}$和1,其面積為$2\sqrt{3}×1$=2$\sqrt{3}$.
∴該幾何體的表面積為:$2\sqrt{3}+2\sqrt{3}+4=4+4\sqrt{3}$.
故答案為$4+4\sqrt{3}$.

點評 本題考查了對三視圖的認(rèn)識和理解,能求三視圖的體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}-2x,x≤0\\{log_2}(x+1),x>0\end{array}$,則f(f(-1))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知p:-x2+4x+32≥0,q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
(2)若“¬p”是“¬q”的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.以下四個關(guān)于圓錐曲線的命題中:其中真命題為④(寫出所有真命題的序號)
①A、B為不同的兩個定點,K為非零常數(shù),若|PA|-|PB|=K,則動點P的軌跡是雙曲線.
②平面內(nèi)與兩個定點F1,F(xiàn)2的距離和等于常數(shù)的點的軌跡是橢圓.
③平面內(nèi)與一個定點F和一條定直線l距離相等的點的軌跡叫做拋物線.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,四棱錐PABCD的底面是邊長為8的正方形,四條側(cè)棱長均為2$\sqrt{17}$.點G,E,F(xiàn),H分別是棱PB,AB,CD,PC上共面的四點,平面GEFH⊥平面ABCD,BC∥平面GEFH.若EB=2,則四邊形GEFH的面積為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AC⊥平面α于C,BG⊥平面α于G,AB∥平面α,CD?平面α,M、N分別為AC、BD的中點,若AB=4,AC=2,CD=4,BD=6
(1)求證:CG⊥平面ACD;
(2)求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某三棱錐的三視圖如圖,該三棱錐的體積是( 。
A.2B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=x${\;}^{2}+ax+sin(\frac{π}{2}x)$,x∈(0,1).
(1)若f(x)在(0,1)上是單調(diào)遞增函數(shù),求a的取值范圍;
(2)當(dāng)a=-2時,f(x)≥f(x0)恒成立,且f(x1)=f(x2)(x1≠x2),求證:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=px+$\frac{q}{x}$(實數(shù)p、q為常數(shù)),且滿足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求函數(shù)f(x)的解析式;
(2)試判斷函數(shù)f(x)在區(qū)間(0,$\frac{1}{2}}$]上的單調(diào)性,并用函數(shù)單調(diào)性定義證明;
(3)當(dāng)x∈(0,$\frac{1}{2}}$]時,函數(shù)f(x)≥2-m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案