已知所在的平面互相垂直,且AB=BC=BD,,求:
⑴.直線AD與平面BCD所成角的大;
⑵.直線AD與直線BC所成角的大;
⑶.二面角A-BD-C的余弦值.
⑴如圖,在平面ABC內(nèi),過A作AH⊥BC,垂足為H,
則AH⊥平面DBC,∴∠ADH即為直線AD與平面BCD所成的角
由題設(shè)知△AHB≌△AHD,則DH⊥BH,AH=DH,∴∠ADH=45°
⑵∵BC⊥DH,且DH為AD在平面BCD上的射影,
∴BC⊥AD,故AD與BC所成的角為90°
⑶過H作HR⊥BD,垂足為R,連結(jié)AR,則由三垂線定理知,AR⊥BD,故∠ARH為二面角A—BD—C的平面角的補(bǔ)角 設(shè)BC=a,則由題設(shè)知,AH=DH=,在△HDB中,HR=a,∴tanARH==2
故二面角A—BD—C的余弦值的大小為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
OA |
a |
OB |
b |
OC |
c |
a |
b |
c |
OH |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省沈陽四校高三上學(xué)期12月月考理科數(shù)學(xué)試卷 題型:解答題
已知如圖幾何體,正方形和矩形所在平面互相垂
直,,為的中點(diǎn),。
(Ⅰ)求證: ;
(Ⅱ)求二面角 的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
OA |
a |
OB |
b |
OC |
c |
a |
b |
c |
OH |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年新教材高考數(shù)學(xué)模擬題詳解精編試卷(4)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com