分析 作出如圖的空間四邊形,連接AC,BD可得一個三棱錐,將四個中點連接,得到一個四邊形,可證明其是一個菱形.
解答 解:作出如圖的空間四邊形,
連接AC,BD可得一個三棱錐,
將四個中點連接,得到一個四邊形EFGH,
由中位線的性質知,
EH∥FG,EF∥HG
故四邊形EFGH是平行四邊形,
又AC=BD,
故有HG=$\frac{1}{2}$AC=$\frac{1}{2}$BD=EH,
故四邊形EFGH是菱形.
故答案為:菱形.
點評 本題考查空間中直線與干線之間的位置關系,解題的關鍵是掌握空間中直線與直線之間位置關系的判斷方法,本題涉及到線線平行的證明,中位線的性質等要注意這些知識在應用時的轉化方式.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=cosx | B. | y=2|sinx| | C. | y=cos$\frac{x}{2}$ | D. | y=tanx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com