精英家教網 > 高中數學 > 題目詳情

( (本題滿分14分)為贏得2010年廣州亞運會的商機,某商家最近進行了新科技產品的市場分析,調查顯示,新產品每件成本9萬元,售價為30萬元,每星期賣出432件,如果降低價格,銷售量可以增加,且每星期多賣出的商品件數與商品單價的降低值(單位:萬元,)的平方成正比,已知商品單價降低2萬元時,一星期多賣出24件.(1)將一個星期的商品銷售利潤表示成的函數;
(2)如何定價才能使一個星期的商品銷售利潤最大?


解:(1)設商品降價萬元,則多賣的商品數為
若記商品在一個星期的獲利為,………………1分
則依題意有
,…4分
又由已知條件,,于是有,……5分
所以.…………7分
(2)如何定價才能使一個星期的商品銷售利潤最大?
解:根據(1),我們有
………………9分
作出以下表格:



2

12



0

0



極小

極大

   
………………12分
時,達到極大值.因為,則定價為萬元能使一個星期的商品銷售利潤最大.……14分

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數方程為
x=2cosα
y=1+cos2α
(α 參數).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設實數x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江蘇省高三上學期期中考試數學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數m的值

(Ⅱ)若ACRB,求實數m的取值范圍

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三上學期第三次月考理科數學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數學 來源:2014屆江西省高一第二學期入學考試數學 題型:解答題

(本題滿分14分)已知函數.

(1)求函數的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案