【題目】數(shù)列中,,,其中為常數(shù).
(1)若成等比數(shù)列,求的值;
(2)是否存在,使得數(shù)列為等差數(shù)列?并說(shuō)明理由.
【答案】(1)(2)
【解析】
(1)由已知條件分別計(jì)算出的值,然后代入等比數(shù)列中求出結(jié)果
(2)解法1:通過(guò)已知條件得到奇數(shù)項(xiàng)和偶數(shù)項(xiàng)都成等差數(shù)列,分別求出其通項(xiàng)公式,由數(shù)列為等差數(shù)列,求出的值;解法2:假設(shè)存在,由數(shù)列為等差數(shù)列,則,計(jì)算出通項(xiàng)公式,結(jié)合條件計(jì)算出結(jié)果
(1)由可得
所以,,
又成等比數(shù)列,
所以,即,又,故.
(2)解法1:當(dāng)時(shí),,,
相減得,
所以是首項(xiàng)為1,公差為的等差數(shù)列,是首項(xiàng)為,公差為的等差數(shù)列,
故
因此要使得數(shù)列為等差數(shù)列,則,得
即存在,使得數(shù)列為等差數(shù)列.
解法2:假設(shè)存在,使得數(shù)列為等差數(shù)列,則,即,解得,
公差 ,因此,
此時(shí)驗(yàn)證,滿足條件,
即存在,使得數(shù)列為等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動(dòng)點(diǎn),將線段OM繞O點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶(hù)選擇:
方案一:每戶(hù)每月收取管理費(fèi)2元,月用電量不超過(guò)30度時(shí),每度0.5元;超過(guò)30度時(shí),超過(guò)部分按每度0.6元收。
方案二:不收取管理費(fèi),每度0.58元.
(1)求方案一的收費(fèi)L(x)(元)與用電量x(度)間的函數(shù)關(guān)系.若老王家九月份按方案一繳費(fèi)35元,問(wèn)老王家該月用電多少度?
(2)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(Ⅱ)若函數(shù)對(duì)任意實(shí)數(shù)都有成立,求函數(shù)的解析式;
(Ⅲ)若函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,若該幾何體的外接球表面積為,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫(huà)出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問(wèn)題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)若在處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com