【題目】如圖,在四棱錐中,底面是正方形.點是棱的中點,平面與棱交于點

1)求證:;

2)若,且平面平面,試證明平面;

3)在(2)的條件下,線段上是否存在點,使得平面?(直接給出結(jié)論,不需要說明理由)

【答案】1)詳見解析;(2)詳見解析;(3)詳見解析.

【解析】

試題(1)首先證明,再利用線面平行的性質(zhì)即可得證;(2)根據(jù)題目條件證明,再根據(jù)線面垂直的判定即可得證;(3)假設(shè)存在符合題意的點,根據(jù)面面垂直的判定推導出與題意矛盾的地方,即可得證.

試題解析:(1底面是菱形,,又,,又,,,四點共面,且平面平面,;(2)在正方形中,,又平面平面,且平面平面,

平面,又平面,,由(1)可知,

,,由點是棱中點,是棱中點,

中,,,又平面;(3)若存在符合題意的點平面,平面平面平面,而這與題意矛盾了,不存在.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示.

1)求函數(shù)的解析式及其對稱軸方程;

2)求函數(shù)在區(qū)間上的最大值和最小值,并指出取得最值時的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,. 

(1)證明:平面平面;

(2)若為棱的中點,,,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市場上有一種新型的強力洗衣液,特點是去污速度快.已知每投放,且)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中.若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于(克/升)時,它才能起到有效去污的作用.

1)當一次投放個單位的洗衣液時,求在分鐘時,洗衣液在水中釋放的濃度.

2)在(1)的情況下,即一次投放個單位的洗衣液,則有效去污時間可達幾分鐘?

3)若第一次投放個單位的洗衣液,分鐘后再投放個單位的洗衣液,請你寫出第二次投放之后洗衣液在水中釋放的濃度(克/升)與時間(分鐘)的函數(shù)關(guān)系式,求出最低濃度,并判斷接下來的四分鐘是否能夠持續(xù)有效去污.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】賽季的歐洲冠軍聯(lián)賽八分之一決賽的首回合較量將于北京時間2018年2月15日3:45在伯納烏球場打響.由羅領(lǐng)銜的衛(wèi)冕冠軍皇家馬德里隊(以下簡稱“皇馬”)將主場迎戰(zhàn)剛剛創(chuàng)下歐冠小組賽最多進球記錄的法甲領(lǐng)頭羊巴黎圣日曼隊(以下簡稱“巴黎”),激烈對決,一觸即發(fā).比賽分上,下兩個半場進行,現(xiàn)在有加泰羅尼亞每題測皇馬,巴黎的每半場進球數(shù)及概率如表:

0

1

2

巴黎

皇馬

(1)按照預測,求巴黎在比賽中至少進兩球的概率;

(2)按照預測,若設(shè)為皇馬總進球數(shù),為巴黎總進球數(shù),求的分布列,并判斷的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,,,分別為棱,,的中點.

1)求證:;

2)若,,求三棱錐的體積;

3)判斷直線與平面的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·深圳二模)新零售模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.

x()

2

3

4

5

6

y(百萬元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合yx的關(guān)系,求y關(guān)于x的線性回歸方程;

(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)x,y之間的關(guān)系為zy-0.05x2-1.4,請結(jié)合(1)中的線性回歸方程,估算該公司應在A區(qū)開設(shè)多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形和四邊形均是直角梯形,,二面角是直二面角,,,.

(1)求證:

(2)求二面角的大小.

查看答案和解析>>

同步練習冊答案