A. | 0 | B. | 1 | C. | 1+2cos1 | D. | 1-2cos1 |
分析 根據(jù)分段函數(shù),則$\int_{-1}^e{f(x)dx=}$${∫}_{-1}^{1}$sinxdx+${∫}_{1}^{e}$$\frac{1}{x}$dx,根據(jù)定積分的計算法則計算即可.
解答 解:$f(x)=\left\{\begin{array}{l}sinx,x≤1\\ \frac{1}{x},x>1\end{array}\right.$,則$\int_{-1}^e{f(x)dx=}$${∫}_{-1}^{1}$sinxdx+${∫}_{1}^{e}$$\frac{1}{x}$dx=-cosx|${\;}_{-1}^{1}$+lnx|${\;}_{1}^{e}$=-(cos1-cos(-1))+lne-ln1=1,
故選:B.
點評 本題考查了分段函數(shù)和定積分的計算,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.2 | B. | 0.5 | C. | 0.75 | D. | 1.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-e,e) | B. | (-∞,-e)∪(e,+∞) | C. | (-∞,-e)∪(0,e) | D. | (-e,0)∪(e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com