13.設(shè)偶函數(shù)f(x)的導(dǎo)函數(shù)是f′(x)且f(e)=0,當(dāng)x>0時(shí),有[f′(x)-f(x)]ex>0成立,則使得f(x)>0的x的取值范圍是( 。
A.(-e,e)B.(-∞,-e)∪(e,+∞)C.(-∞,-e)∪(0,e)D.(-e,0)∪(e,+∞)

分析 分別求出f(x)在(-∞,0),(0,+∞)的單調(diào)性,求出不等式f(x)>0的解集即可.

解答 解:∵x>0時(shí),有[f′(x)-f(x)]ex>0,
∴x>0時(shí),f(x)遞增,
而函數(shù)f(x)的偶函數(shù),
∴x<0時(shí),f(x)遞減,
又f(e)=0,故f(-e)=f(e)=0,
∴x>0時(shí),f(x)>0=f(e),故x>e,
x<0時(shí),f(x)>f(e),故x<-e,
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查函數(shù)的奇偶性問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在Rt△ABC中,已知AC=4,BC=1,P是斜邊AB上的動(dòng)點(diǎn)(除端點(diǎn)外),設(shè)P到兩直角邊的距離分別為d1,d2,則$\frac{1}{d_1}+\frac{1}{d_2}$的最小值為( 。
A.$\frac{5}{4}$B.$\frac{3}{2}$C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$f(x)=\left\{\begin{array}{l}sinx,x≤1\\ \frac{1}{x},x>1\end{array}\right.$,則$\int_{-1}^e{f(x)dx=}$( 。
A.0B.1C.1+2cos1D.1-2cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.把能夠?qū)AO:x2+y2=9的周長和面積同時(shí)分為相等的兩部分的函數(shù)稱為圓O的“圓夢(mèng)函數(shù)”,則下列函數(shù)不是圓O的“圓夢(mèng)函數(shù)”的是(  )
A.f(x)=x3B.$f(x)=tan\frac{x}{2}$C.f(x)=ln[(4-x)(4+x)]D.f(x)=(ex+e-x)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+5x+6$在區(qū)間[1,3]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f′(x)≤0,則必有( 。
A.f(-3)+f(3)<2f(1)B.f(-3)+f(7)>2f(1)C.f(-3)+f(3)≤2f(1)D.f(-3)+f(7)≥2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2-ax-1+lnx(x>0).
(Ⅰ)當(dāng)a=3時(shí),求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)在$(0,\frac{1}{2})$上是增函數(shù),求a的取值范圍;
(Ⅲ)是否存在實(shí)數(shù)a>1,使得方程f(x)=x2-1在區(qū)間(1,e)上有解,若存在,試求出a的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=$\frac{1}{x}$,g(x)=f(x)+af′(x).
(1)若a<0,試判斷g(x)在定義域內(nèi)的單調(diào)性;
(2)若g(x)在[1,e]上的最小值為$\frac{3}{2}$,求a的值;
(3)證明:當(dāng)a≥1時(shí),g(x)>ln(x+1)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}:$\frac{1}{1}$,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…$\frac{1}{1+2+3+…n}$,…,求它的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案