“?x∈(-1,1)使ax2-1≥0”為真命題,則a的取值范圍是
 
考點(diǎn):特稱命題
專題:簡(jiǎn)易邏輯
分析:根據(jù)特稱命題的性質(zhì)進(jìn)行求解即可.
解答: 解:若“?x∈(-1,1)使ax2-1≥0”為真命題,
即等價(jià)為ax2≥1成立,
當(dāng)x=0時(shí),不等式不成立,
當(dāng)x≠0時(shí),不等式等價(jià)為a≥
1
x2
,
當(dāng)x∈(-1,1)且x≠0時(shí),
1
x2
>1,
若“?x∈(-1,1)使ax2-1≥0”為真命題,
則a>1即可,
故答案為:a>1
點(diǎn)評(píng):本題主要考查特稱命題的應(yīng)用,將條件轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量 
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),記  f(x)=
m
n

(Ⅰ)若 f(a)=
3
2
,求cos(
3
-a)的值;
(Ⅱ)將函數(shù) y=f(x)的圖象向右平移
3
個(gè)單位得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)-k在[0,
3
]上有零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x,x>0
0,x=0
x2+mx,x<0
是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex-e-x
2
,則下列說法正確的是( 。
A、奇函數(shù),在R上單調(diào)遞減
B、偶函數(shù),在R上單調(diào)遞增
C、奇函數(shù),在R上單調(diào)遞增
D、偶函數(shù),在R上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}的首項(xiàng)為-10、公差為2,則它的前n項(xiàng)Sn的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程2x2-(
3
+1)x+m=0的兩根為sinα和cosα,且α∈(0,2π),求
(1)m的值
(2)方程的兩根及此時(shí)α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

300°的弧度數(shù)是( 。
A、
3
B、
3
C、
6
D、-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域
(1)y=(x-2) 
1
4

(2)y=log2(9-x2
(3)y=
1
x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)甲、乙兩種商品的重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:mg):
甲:13 15 14 9 14 21 9 10 11 14
乙:10 14 9 12 15 14 11 19 22 16
(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);
(2)計(jì)算甲種商品重量誤差的樣本方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案