下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.

(1)若的中點(diǎn),求證:;
(2)證明.
(3)求該幾何體的體積.

(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)

解析試題分析:由三視圖可知底面是邊長(zhǎng)為4的正方形,,,,且。(1)根據(jù)等腰三角形中線(xiàn)即為高線(xiàn)可證得,根據(jù),且為正方形可證得,即可證得,根據(jù)線(xiàn)面垂直的判定定理可得。(2)取的中點(diǎn), 的交點(diǎn)為,可證得四邊形平行四邊形,即可證得,根據(jù)線(xiàn)面平行的定義即可證得。(3)用分割法求體積,即將此幾何體分割成以為頂點(diǎn)的一個(gè)四棱錐和一個(gè)三棱錐。
試題解析:解:(1)由幾何體的三視圖可知,底面是邊長(zhǎng)為4的正方形,
而且,,
的中點(diǎn),如圖所示.
,∴
又∵,∴,
.又,
.               5分
(2)如圖

的中點(diǎn), 的交點(diǎn)為
連結(jié)、,如圖所示.
,,∴,,
∴四邊形為平行四邊形,
,又, ∴∥面,
.              9分
(3).          13分
考點(diǎn):1三視圖;2線(xiàn)面平行;3線(xiàn)面垂直;4棱錐的體積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的多面體中,已知正三棱柱ABCA1B1C1的所有棱長(zhǎng)均為2,四邊形ABDC是菱形.

(1)求證:平面ADC1⊥平面BCC1B1;
(2)求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)幾何體是由圓柱和三棱錐組合而成,點(diǎn)、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖4所示,其中,,

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直三棱柱中,分別是的中點(diǎn).

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一個(gè)四棱錐PABCD的三視圖(正視圖與側(cè)視圖為直角三角形,俯視圖是帶有一條對(duì)角線(xiàn)的正方形)如圖,E是側(cè)棱PC的中點(diǎn).

(1)求四棱錐PABCD的體積;
(2)求證:平面APC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在四棱錐中,底面為矩形,平面,點(diǎn)在線(xiàn)段上,平面

(1)證明:平面.;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面是菱形,,,的中點(diǎn),點(diǎn)在側(cè)棱上.

(1)求證:⊥平面;
(2)若的中點(diǎn),求證://平面;
(3)若,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知梯形,,,分別是、上的點(diǎn),,.沿將梯形翻折,使平面⊥平面(如圖).的中點(diǎn).

(1)當(dāng)時(shí),求證: ;
(2)當(dāng)變化時(shí),求三棱錐體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在四棱錐P-ABCD中,△PBC為正三角形,PA⊥底面ABCD,其三視圖如圖所示,俯視圖是直角梯形.
 
(1)求正視圖的面積;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案