分析 (1)令g(x)=f(x)+|x|,求出g(x)的最小值即可得出a的范圍;
(2)利用絕對值三角不等式的性質(zhì)得出證明.
解答 解:(1)由題意知a≤|$\frac{2}{3}x+1$|+|x|恒成立,
令g(x)=|$\frac{2}{3}x+1$|+|x|=$\left\{\begin{array}{l}{-\frac{5}{3}x-1,x≤-\frac{3}{2}}\\{-\frac{1}{3}x+1,-\frac{3}{2}<x<0}\\{\frac{5}{3}x+1,x≥0}\end{array}\right.$,則a≤gmin(x).
則g(x)在(-∞,0)上單調(diào)遞減,在[0,+∞)上單調(diào)遞增,
∴當(dāng)x=0時,g(x)取得最小值g(0)=1,
∴a≤1.
(2)證明:對于實數(shù)x,y,有|x+y+1|≤$\frac{1}{3}$,|y-$\frac{1}{3}$|≤$\frac{2}{3}$,
則f(x)=|$\frac{2}{3}x+1$|=|$\frac{2}{3}$(x+y+1)-$\frac{2}{3}$(y-$\frac{1}{3}$)+$\frac{1}{9}$|
≤$\frac{2}{3}$|x+y+1|+$\frac{2}{3}$|y-$\frac{1}{3}$|+$\frac{1}{9}$=$\frac{2}{3}×\frac{1}{3}$+$\frac{2}{3}×$$\frac{2}{3}$+$\frac{1}{9}$=$\frac{7}{9}$,
∴f(x)≤$\frac{7}{9}$.
點評 本題考查了絕對值不等式的解法,絕對值三角不等式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥0 | B. | b≤0 | C. | c=0 | D. | a-2b+c=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 056,080,104 | B. | 054,078,102 | C. | 054,079,104 | D. | 056,081,106 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | $[{-2,2\sqrt{2}}]$ | C. | $[{-2\sqrt{2},2}]$ | D. | $[{-2\sqrt{2},2\sqrt{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com