13.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=cosβ}\\{y=1+sinβ}\end{array}\right.$(β為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和曲線C2的極坐標(biāo)方程;
(2)已知射線l1:θ=α($\frac{π}{6}$<α<$\frac{π}{2}$),將射線l1順時針方向旋轉(zhuǎn)$\frac{π}{6}$得到l2:θ=α-$\frac{π}{6}$,且射線l1與曲線C1交于兩點,射線l2與曲線C2交于O,Q兩點,求|OP|•|OQ|的最大值.

分析 (1)由曲線C1的參數(shù)方程能求出曲線C1的直角坐標(biāo)方程,從而能求出曲線C1的極坐標(biāo)方程.由曲線C2的參數(shù)方程能求出曲線C2的直角坐標(biāo)方程,從而能求出曲線C2的極坐標(biāo)方程.
(2)設(shè)點P的極坐標(biāo)為P(ρ1,α),即ρ1=2cosα,設(shè)點Q的坐標(biāo)為Q(${ρ}_{2},α-\frac{π}{6}$),即${ρ}_{2}=2sin(α-\frac{π}{6})$,mh|OP|•|OQ|=ρ1•ρ2=2cos$α•2sin(α-\frac{π}{6})$=2sin(2$α-\frac{π}{6}$)-1,能求出|OP|•|OQ|的最大值.

解答 解:(1)∵曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),
∴曲線C1的直角坐標(biāo)方程為(x-1)2+y2=1,
即x2+y2-2x=0,
∴曲線C1的極坐標(biāo)方程為ρ2-2ρcosθ=0,即ρ=2cosθ.
∵曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=cosβ}\\{y=1+sinβ}\end{array}\right.$(β為參數(shù)),
∴曲線C2的普通方程x2+(y-1)2=1,即x2+y2-2y=0,
∴曲線C2的極坐標(biāo)方程為ρ2-2ρsinθ=0,即ρ=2sinθ.
(2)設(shè)點P的極坐標(biāo)為P(ρ1,α),即ρ1=2cosα,
設(shè)點Q的坐標(biāo)為Q(${ρ}_{2},α-\frac{π}{6}$),即${ρ}_{2}=2sin(α-\frac{π}{6})$,
∴|OP|•|OQ|=ρ1•ρ2=2cos$α•2sin(α-\frac{π}{6})$=4cosα($\frac{\sqrt{3}}{2}$sin$α-\frac{1}{2}cosα$)
=2$\sqrt{3}$sinαcosα-2cos2α=$\sqrt{3}sin2α$-cos2α-1=2sin(2$α-\frac{π}{6}$)-1,
∵α∈($\frac{π}{6},\frac{π}{2}$),∴$2α-\frac{π}{6}$∈($\frac{π}{6},\frac{5π}{6}$),
當(dāng)2$α-\frac{π}{6}$=$\frac{π}{2}$,即$α=\frac{π}{3}$時,|OP|•|OQ|取最大值1.

點評 本題考查曲線的極坐標(biāo)方程的求法,考查兩線段積的最大值的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xoy中,曲線C1的普通方程為x2+y2+2x-4=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x={t^2}\\ y=t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系.
(1)求曲線C1,C2的極坐標(biāo)方程;
(2)求曲線C1與C2交點的極坐標(biāo)(ρ,θ),其中ρ≥0,0≤θ<2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求過(-2,3)點且斜率為2的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=lnx+\frac{m}{x}+3x$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意的m∈[0,2],不等式f(x)≤(k+1)x,對x∈[1,e]恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|$\frac{2}{3}$x+1|.
(1)若不等式f(x)≥-|x|+a恒成立,求實數(shù)a的取值范圍;
(2)若對于實數(shù)x,y,有|x+y+1|≤$\frac{1}{3}$,|y-$\frac{1}{3}$|≤$\frac{2}{3}$,求證:f(x)≤$\frac{7}{9}$,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在三棱錐P-ABC中,PA=$\sqrt{2}$,PB=$\sqrt{3}$,PC=2,且PA,PB,PC兩兩垂直,則此三棱錐外接球的體積是$\frac{9π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$.若存在實數(shù)b,使得函數(shù)y=f(x)-bx恰有2個零點,則實數(shù)a的取值范圍是(-∞,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=ex+sinx(e為自然對數(shù)的底數(shù)),g(x)=ax,F(xiàn)(x)=f(x)-g(x).
(1)若x=0是F(x)的極值點,且直線x=t(t≥0)分別與函數(shù)f(x)和g(x)的圖象交于P,Q,求P,Q兩點間的最短距離;
(2)若x≥0時,函數(shù)y=F(x)的圖象恒在y=F(-x)的圖象上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點,以A為圓心,AD為半徑的圓交AB于G,點P在$\widehat{DG}$上運動(如圖).若$\overrightarrow{AP}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$,其中λ,μ∈R,則6λ+μ的取值范圍是(  )
A.[1,$\sqrt{2}$]B.[$\sqrt{2}$,2$\sqrt{2}$]C.[2,2$\sqrt{2}$]D.[1,2$\sqrt{2}$]

查看答案和解析>>

同步練習(xí)冊答案