已知A、B、C是最大邊長為2的△ABC的三個內(nèi)角,
(1)求tanA•tanB的值.(2)求∠C的最大值及此時△ABC的面積.
【答案】分析:(1)利用求出的表達式,化簡可得tanA•tanB的值.
(2)利用C=π-(A+B)求出,利用基本不等式求得C的最大值,然后利用余弦定理求出a,b,即可求出三角形的面積.
解答:解:(1)∵=10-2cos(A-B)+8cos(A+B)
=10-2cosAcosB-10sinAsinB=10∴
(2)∴∴tanA>0,tanB>0

當且僅當取等號.
,∴c為最大邊.即c=2
由余弦定理:c2=a2+b2-2abcosC∴

點評:本題是中檔題,考查三角函數(shù)的化簡與求值,余弦定理的應(yīng)用,基本不等式的知識,是一道綜合題,考查學生分析問題解決問題的能力,公式的熟練程度決定學生的能力的高低.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A、B、C是最大邊長為2的△ABC的三個內(nèi)角,
m
=(2sin
A-B
2
,4sin
C
2
),|
m
|=
10

(1)求tanA•tanB的值.(2)求∠C的最大值及此時△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c是直角三角形的三邊,其中c為斜邊,若實數(shù)M使不等式
1
a
+
1
b
+
1
c
M
a+b+c
恒成立,則實數(shù)M的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B、C是最大邊長為2的△ABC的三個內(nèi)角,數(shù)學公式
(1)求tanA•tanB的值.(2)求∠C的最大值及此時△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A、B、C是最大邊長為2的△ABC的三個內(nèi)角,
m
=(2sin
A-B
2
,4sin
C
2
),|
m
|=
10

(1)求tanA•tanB的值.(2)求∠C的最大值及此時△ABC的面積.

查看答案和解析>>

同步練習冊答案