已知橢圓E:=1的左焦點為F,左準線l與x軸的交點是圓C的圓心,圓C恰好經(jīng)過坐標原點O,設G是圓C上任意一點.

(1)求圓C的方程;

(2)若直線FG與直線l交于點T,且G為線段FT的中點,求直線FG被圓C所截得的弦長;

(3)在平面上是否存在一點P,使得?若存在,求出點P坐標;若不存在,請說明理由.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:全優(yōu)設計選修數(shù)學-1-1蘇教版 蘇教版 題型:044

已知橢圓C:=1(a>b>0)的左、右焦點分別是F1、F2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點.設

(1)證明λ=1-e2;

(2)確定λ的值,使得ΔPF1F2是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:山西省山大附中2011-2012學年高二12月月考數(shù)學試題 題型:044

已知橢圓C=1(ab>0)的離心率e,左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設直線lykxm與橢圓C交于M、N兩點,直線F2MF2N的傾斜角分別為α,β,且αβπ,試問直線l是否過定點?若過,求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:河南省鄭州市智林學校2011屆高三第一次月考理科數(shù)學試題 題型:044

已知橢圓E:=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點P是x軸上方橢圓E上的一點,且PF1⊥F1F2,|PF1|=,|PF2|=

(Ⅰ)求橢圓E的方程和P點的坐標;

(Ⅱ)判斷以PF2為直徑的圓與以橢圓E的長軸為直徑的圓的位置關系;

(Ⅲ)若點G是橢圓C:=1(m>n>0)上的任意一點,F(xiàn)是橢圓C的一個焦點,探究以GF為直徑的圓與以橢圓C的長軸為直徑的圓的位置關系

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省蒼南縣錢高、靈溪二高2011屆高三上學期第一次月考聯(lián)考文科數(shù)學試題 題型:044

已知橢圓C:=1(a>b>0)的離心率e=,左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設直線l:kx+m與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角分別為α,β且α+β=π,求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

同步練習冊答案