設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
解:(1)因?yàn)?sub>,,,
所以, 即.
當(dāng)m=0時(shí),方程表示兩直線,方程為;
當(dāng)時(shí), 方程表示的是圓
當(dāng)且時(shí),方程表示的是橢圓;
當(dāng)時(shí),方程表示的是雙曲線.
(2).當(dāng)時(shí), 軌跡E的方程為,設(shè)圓心在原點(diǎn)的圓的一條切線為,解方程組得,即,
要使切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,
則使△=,
即,即, 且
,
要使, 需使,即,
所以, 即且, 即恒成立.
所以又因?yàn)橹本為圓心在原點(diǎn)的圓的一條切線,
所以圓的半徑為,, 所求的圓為.
當(dāng)切線的斜率不存在時(shí),切線為,與交于點(diǎn)或也滿足.
綜上, 存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.
(3)當(dāng)時(shí),軌跡E的方程為,設(shè)直線的方程為,因?yàn)橹本與圓C:(1<R<2)相切于A1, 由(2)知, 即 ①,
因?yàn)?sub>與軌跡E只有一個(gè)公共點(diǎn)B1,
由(2)知得,
即有唯一解
則△=, 即, ②
由①②得, 此時(shí)A,B重合為B1(x1,y1)點(diǎn),
由 中,所以,,
B1(x1,y1)點(diǎn)在橢圓上,所以,所以,
在直角三角形OA1B1中,因?yàn)?sub>當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,即
當(dāng)時(shí)|A1B1|取得最大值,最大值為1.
【命題立意】:本題主要考查了直線與圓的方程和位置關(guān)系,以及直線與橢圓的位置關(guān)系,可以通過(guò)解方程組法研究有沒(méi)有交點(diǎn)問(wèn)題,有幾個(gè)交點(diǎn)的問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
4 |
y2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
m+2 |
y2 |
9-m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
4 |
π |
2 |
3 |
4 |
OA |
OB |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com