17.i是虛數(shù)單位,復數(shù)$\frac{4i}{1-i}$等于( 。
A.-2-2iB.2-2iC.-2+2iD.2+2i

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:$\frac{4i}{1-i}$=$\frac{4i(1+i)}{(1-i)(1+i)}=\frac{4i(1+i)}{2}=-2+2i$,
故選:C.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.二次函數(shù)f(x)的圖象頂點為A(1,16),且圖象在x軸上截得線段長為8.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(x)+(2a-2)x,求函數(shù)g(x)在x∈[0,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1內(nèi)有一個內(nèi)切球O,則在正方體ABCD-A1B1C1D1內(nèi)任取點M,點M在球O內(nèi)的概率是( 。
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知sinα+cosα=-$\sqrt{2}$,則tanα+$\frac{1}{tanα}$的值等于( 。
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=x3-x2-3x+3,則曲線y=f(x)在點(1,f(1))處的切線方程為y=-2x+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.直線l1:2x-y-1=0與直線l2:mx+y+1=0互相垂直的充要條件是( 。
A.m=-2B.m=-$\frac{1}{2}$C.m=$\frac{1}{2}$D.m=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知圓M的半徑為1,若此圓同時與x軸和直線y=$\sqrt{3}$x相切,則圓M的標準方程可能是( 。
A.(x-$\sqrt{3}$)2+(y-1)2=1B.(x-1)2+(y-$\sqrt{3}$)2=1C.(x-1)2+(y+$\sqrt{3}$)2=1D.(x-$\sqrt{3}$)2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列函數(shù)中,在區(qū)間(-∞,0)上是減函數(shù)的是( 。
A.y=2xB.y=${log}_{\frac{1}{2}}$xC.y=x-1D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.以下選項中判斷正確的是( 。
A.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y全不為0,則x2+y2≠0”
B.若命題$p:?{x_0}∈R,{x_0}^2-{x_0}+1<0$,則?p:?x∉R,x2-x+1≥0
C.若命題“p或q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

同步練習冊答案